
ISSN 0316-6295

W. David Elliott and David T.

Technical Report CSRG-82

July 1977

Barnard

COMPUTER SYSTEMS RESEARCH GROUP
UNIVERSITY OF TORONTO

Notes on Euclid

edited by

W. David Elliott and David T. Barnard

Technical Report CSRG-82

July 1977

Authors:

Edward G. Aseltine
David T. Barnard
Ernest Chang
Jim des Rivieres
W. David Elliott
Neil E. Kaden
Henry Spencer
David H. Thompson
Ted Venema

The Computer Systems Research Group (CSRG) is an
interdisciplinary group formed to conduct research and
development relevant to computer systems and their applications.
It is jointly administered by the Department of Electrical
Engineering and the Department of Computer Science of the
University of Toronto, and is supported in part by the National
Research Council of Canada.

Digitized by the Internet Archive
in 2018 with funding from

University of Toronto

https://archive.org/details/technicalreportc82univ

Abstract: This report contains papers analyzing various aspects
of the programming language Euclid: abstract data types,
isolation of machine dependencies, readability and writability,
and comparisons of Euclid with Pascal and Modula. This report
also includes an index to the Euclid Report.

Acknowledgements: Any contribution "Notes on Euclid" has to make
is a tribute to Jim Horning, whose consistent insights and
enthusiasm motivated those in the course throughout. Through his
lectures our group was privy to the detailed thinking behind
Euclid design decisions. We appreciate the efforts of Inge
Weber, who patiently edited this report. Ric Holt and Brian
Randell provided helpful comments. Professor Niklaus Wirth
provided helpful comments and clarified several points about
Modula.

Table cfjContents

Preface. iii

Abstract Data Types in Euclid . .. 1

Isolation of Machine Dependencies in Euclid . . 9

Readability and Writability in Euclid . 15

Euclid and Pascal.23

Euclid and Modula ..36

Index to the Euclid Report.52

ii

If there’s a hole in a' your coats,
I rede you tent it;
A child’s among you takin' notes.
And faith he'll prent it.

Burns

Preface: Euclid is a programming language based on Pascal
intended for writing verifiable system programs. During the fall
of 1976 at the University of Toronto, Jim Horning, one of the
Euclid designers, taught CS2124, Topics in Programming Languages.
The course comprised a number of weeks of lectures on Euclid and
its development by Jim, followed by critiques of various aspects
of Euclid presented by students in the course. Those
presentations formed the bases of the papers in this report.

The authors of the papers were dealing with a somewhat elusive
target. Several different versions of the Euclid Report have
appeared. Successive versions took into account criticisms that
had been received, including points that were raised by the
presentations in CS2124. Accordingly, some of the papers
presented here had to be extensively modified, partially by
removing significant critical comments, to reflect the current
state of the Euclid design. Since the final version of the
Euclid Report appeared after the course was completed, the
modifications were effected by the editors. We have tried to
keep the papers as coherent as possible in spite of this
sometimes radical surgery. No approval by any of the Euclid
designers, implied or expressed, should be attached to these
papers.

At least passing familiarity with both the Pascal and Euclid
Reports is assumed throughout most of these papers. [Lampson et
al.77] is considered the authoritive version of the Euclid Report
(generally referred to herein as nthe Euclid Report" or "the
Report") , and is pe rvasive throughout these papers. The Pascal
Report ([Wirth71]) as well as the Euclid references [Guttag et
al.77], [London et al.77], and [Popek et al.77] should similarly
be declared pervasive.

References

[Guttag et al.77]
J.V. Guttag, J.J. Horning, and R.L. London; A Proof Rule for
Euclid Procedures; USC Information Sciences Institute
Technical Report (May 1977).

[Lampson et al.77]
B.W. Lampson, J.J. Horning, R.L. London, J.G. Mitchell, and
G.J. Popek; Report on the Programming Language Euclid;
SIGPLAN Notices 12,2 (February 1977) pp. 1-79.

iii

[London et al.77]
R.L. London, J.V. Guttag, J. J. Horning, B.W. Lampson, J.G.
Mitchell, and G.J. Popek; Proof Rules for the Programming
Language Euclid; Purple Peril Publishing (1977), and to
appear in Acta Informatica.

[Popek et al.77]
G.J. Popek, J.J. Horning, B.W. Lampson, J.G. Mitchell, and
R.L. London; Notes on the Design of Euclid; SIGPLAN Notices
12,3 (March 1977) pp. 11-18.

[Wirth71]
N. Wirth; The Programming Language Pascal; Acta Informatica
1 (1971) pp. 35-63.

iv

ABSTRACT DATA TYPES IN EUCLID

by Ernest Chang, Neil E. Kaden, and W. David Elliott

Abstract: Euclid provides features that support abstract data
types, but does not strictly speaking provide a true data
abstraction mechanism. This paper assesses the data abstraction
facilities that Euclid does provide, examines the two ways of
instantiating Euclid modules, and discusses other features of
modules that the designers of Euclid chose not to include. In
particular, the paper addresses the issues of (1) enforceable
separation between abstract definition and representation, (2)
specifying the relationship between abstract definition and
representation, (3) type parameters in modules, (4) operator
extensions, and (5) scope restrictions on identifiers.

Contents
1 Introduction
2 Euclid Modules

2.1 Modules as Abstraction Mechanisms
2.2 Two Ways of Instantiating Modules

3 What Euclid Left Undone
3.1 Separation of Abstraction and Representation
3.2 Axiomatic Specification
3.3 Schemes
3.4 Operator Extensions
3.5 On Inheriting Scope

4 Summary

1 Introduction

Euclid was designed
system software, with the
differ from Pascal as
expressly not intended to
programming languages,
designers made was in the

to support the writing of verifiable
subgoal, as a near-term project, to
little as possible. Hence Euclid was
be a research vehicle for new ideas in

One notable exception the Euclid
area of data abstraction.

Virtually all data abstraction mechanisms claim lineage from
the Simula 67 class [Dahl et al.68]. Descendent data abstraction
mechanisms have not in general been used long enough for us to
have much experience with their use, and as a result much of the
area of data abstraction still belongs to the realm of research.

-1-

ABSTRACT DATA TYPES IN EUCLID

Although it was not absolutely necessary for Euclid to
provide a data abstraction facility, its designers felt that such
a programming tool would greatly contribute to the ability to
decompose large programs so that they could be verified with
existing verification methods. A data abstraction mechanism also
encourages writing modular and structured programs, and thus
helps meet other Euclid design goals. ([Horning76] provides an
excellent summary of the advantages provided by abstraction
mechanisms, both data and procedural.)

2 Euclid Modules

The module in Euclid is an encapsulation mechanism whereby
the representation of an abstract object and the implementation
of associated operations can be hidden from the enclosing scope.
Multiple instances of an abstraction can be realized from the
definition of a module type by declaring variables of that type.
Closed scopes, and modules in particular, provide explicit
control over the visibility of identifiers. Objects, operations,
and types defined within the module must be explicitly exported
in order to be used; similarly, values of variables declared
outside a module must be imported explicitly to be known inside.

2.1 Modules as Abstraction Mechanisms

A data type is defined by a set of values and a set of
operations on those values. An abstract data type is a data type
with a representation-independent definition. Thus, abstract
data types permit access by outside routines only to the abstract
values and operations, and not to any of the underlying
representation. In this sense, clusters in CLU [liskov et al.77]
and forms in Alphard [Wulf et al.76] are abstract data types,
whereas classes in Simula 67 [Dahl et al.68] are not, since all
data structures in the outermost scope of a class are accessible.

For -.reasons similar to those for Simula 67 classes, Euclid
modules are not true abstract data types. Access to identifiers
within a module is severely restricted by the import and export
clauses as well as the Euclid scope rules, but access is allowed.

Euclid modules can be used, however, to implement abstract
data types. This would require additional programmer discipline,
unenforceable by the language itself, to ensure that the only
entities accessible to outside routines are those abstract
entities being defined.

2.2 Two Ways of Instantiating Modules

In Euclid there are two distinct methods of defining
equivalent objects and their operations. A module type can be
defined, and instances of the module type declared in the
enclosing scope. Alternatively, a type definition can be

-2-

ABSTRACT DATA TYPES IN EUCLID

exported from a module, and objects of that type declared in the
enclosing scope.

Since no self-respecting abstract data type paper would be
complete without an example of a stack, we will use the stack
example to illustrate the two instantiation methods. Consider
the following implementation of a bounded stack of integers in
which multiple instances of the module will be instantiated. The
procedure "Pop" pops the top value from the stack and assigns it
to the parameter pased.

type Stack(StackSize: unsignedlnt) = module
exports(Pop.Push)
var IntStack: array 1..StackSize of signedlnt
var StackPtr: 0..StackSize := 0

procedure Push(X: signedlnt) =
imports(var IntStack, var StackPtr, StackSize)
begin
procedure Overflow = ... end Overflow
if StackPtr = StackSize then

Overflow
else

StackPtr := StackPtr+1
IntStack(StackPtr) := X

end if
end Push

procedure Pop(var X: signedlnt) =
imports (var IntStack, var StackPtr)
begin
procedure Underflow = ... end Underflow
if StackPtr = 0 then

Underflow
else

X := IntStack(StackPtr)
StackPtr := StackPtr-1

end if
end Pop

end Stack
—r-

The user would access the stack by code such as:

var A,B: Stack (100)
var Element: signedlnt
• 9 •

B.Push(3) ;
A. Pop (Element) ;

Note: Because functions cannot have side effects and s,Popn alters
the stack as well as returning a value, we cannot use the more
natural form "Element := A.Pop".

Alternatively, if the module "Stack" exported a type
definition "Stk", we could have the following module:

-3-

ABSTRACT DATA TYPES IN EUCLID

type Stack = module
exports(Stk, Pop, Push)
type Stk(StackSize: unsignedlnt) = record

var StackPtr: 0..StackSize := 0
var Body: array 1..StackSize of signedlnt
end Stk
*-T

procedure Push(var IStk: Stk (parameter).
X: signedlnt) =

be^in
procedure Overflow = ... end Overflow
if IStk.StackPtr = IStk.StackSize then

Overflow
else

IStk.StackPtr := IStk.StackPtr*1
IStk.Eody(IStk.StackPtr) := X

end if
end Push

procedure Pop (var IStk: Stk (parameter),
var X: signedlnt) =

begin
procedure Underflow = ... end Underflow
if IStk.StackPtr = 0 then

Underflow
else

X := IStk.Body (IStk.StackPtr)
IStk.StackPtr := IStk.StackPtr-1

end if
end Pop

end Stack

Corresponding user code might be:

var SI: Stack
var A: SI .Stk (100)
var E: SI.Stk (299)
var Element: signedlnt
• • «

SI.Push (B,3)
SI. Pop (A ,Element)

The differences between these two stack implementations are
largely stylistic. There are, however, situations in which the
second instantiation method is more powerful, as shown in the
following example.

We would like to define a data type "CharString" that
contains a procedure "Append" that operates on two strings passed
as arguments. The first method of instantiation requires that
the data representation be declared inside the module, and
requires code such as:

{instantiates the module}
{instantiates the object}
{and another object}

-4-

ABSTFACT DATA TYPES IN EUCLID

type CharString = module
imports (CharString)
exports (Append)
var X: array 1..250 of char
procedure Append (var S: CharString) =

imports (X) ...
end Append

• • •

end CharString

Since "Append" must have access to the representation of the
character string "X", it must be located inside the module
"CharString". The requirement that the module import itself, in
order for "Append" to be able to access the other string,
however, presents an illegal situation in Euclid.

Using the second instantiation technique, this problem is
easily dealt with:

type CharStringModule = module
exports (CharString, Append)
type CharString = record ... end CharString
procedure Append (var S1,S2: CharString) =

• • •

end Append
• • «

end CharStringModule

with user code

var S: CharStringModule
var Sa, Sb: S.CharString
• • •

S.Append (Sa,Sb)

The existence of the two instantiation methods adds to the
complexity of the language, especially since combinations of the
two methods are possible. The Euclid designers, however, felt
that there were situations in which each of the two methods
provided a more natural solution. Instantiating modules avoids
the bother of re-importing variables of an exported type. And,
as we saw above, instantiating a type exported from a module
provides capabilities not provided by simply instantiating the
module.

3 What Euclid Left Undone — — — — — — — — ——— ————

Although modules were a notable exception to the Euclid
design guideline of no innovation, somewhat conservative design
decisions were made concerning modules. This section discusses
areas where the Euclid designers could have provided further
module capabilities.

-5-

ABSTRACT DATA TYPES IN EUCLID

3.1 Separation of Abstraction and Representation

In CLU [Liskov et al.77], Mesa [Geschke et al.77], and
Alphard [Wulf et al.76], it is possible to write the
specification of an abstract data type as an entity completely
distinct from its implementation. In this way, it is possible to
change representations quite easily and to implement libraries of
data abstractions and implementations, both of which
capabilities are highly desirable.

Euclid, however, provides no syntactic mechanism to ensure
that this separation is preserved. It is possible in Euclid to
implement interchangeable modules for the same abstract
specifications, but the specification would have to be textually
copied between modules in order to do so. Also, there would be
no way within the language of ensuring that the textually copied
specifications remain the same.

3.2 Axiomatic Specification

In order to be able to prove that a particular representation
of an abstract data type does indeed implement the specified data
abstraction, a language must provide a formal means of specifying
the relationship between the concrete representation and abstract
definition. Although Euclid did not originally provide such a
mechanism, the ill-defined abstraction function now fulfills that
role, in much the same way that the (somewhat misnamed) rep
function does in CLU. In Alphard this relationship between
concrete and abstract is specified in the representation section
of the form. None of these languages, however, provide an
adequate means for axiomatic specification [Guttag et al.76].

3.3 Schemes

Types in Euclid are allowed to have formal parameters. Such
parameters are typed constants, but need not be manifest. It is
possible to defer fixing the value of a parameter by specifying
it as any, unknown, or parameter, but it is not possible to pass
types as parameters to a parameterized type.

Mitchell and Wegbreit [76] have coined the term "scheme" as a
generalization of parameterized types in which type values can be
passed as parameters to the definition mechanism. The
instantiation of a scheme is a (possibly parameterized) abstract
data type. Thus, for example, passing type "integer" as a
parameter to a scheme definition could produce a bounded stack of
integers data type. This data type can in turn be instantiated
to produce a particular abstract data object. Such facilities
exist in both CLU and Alphard, as well as in ELI [Wegbreit74].

-6-

ABSTRACT DATA TYPES IN EUCLID

3.4 Operator Extensions

Operator extensibility in Euclid is strictly procedural in
nature. The generic operators equality and assignment are
identical for all modules, though to be used they must be
explicitly exported. A new operator defined on a data type can
be viewed only as a routine, not as a new infix or prefix
operator.

Operators can be redefined in both CLU and Alphard, and even
equality and assignment can be redefined in CLU. Alphard also
allows operators to be defined as infix or prefix, which
contributes to readability.

3.5 On Inheriting Scope

The Euclid designers took much of the advice of Wulf and Shaw
[73] to heart in attacking the problems of aliasing and global
variables. Unlike the designers of Gypsy [Ambler et al.77], who
discarded the Algol notion of nested scopes, the Euclid designers
chose to reinforce Algol-like block structuring with further
restrictions. In particular, Euclid requires import lists for
closed scopes, prohibits redeclaration of variables within a
scope, prohibits "sneak access" to variables via procedure calls,
and disallows functions with side effects. Euclid allows
different types of access (e.g., read, write) to be associated
with an exported or imported variable, as does Alphard.

Both Euclid and Alphard require that an identifier be passed
through all intervening scopes in order to be known within an
inner scope. (Similarly, in Euclid all ancestors of a machine-
dependent module must be made machine-dependent.) Since Gypsy
does not permit a hierarchy of routine declarations, there are no
intervening scopes that need simply pass an identifier along.

4Sum mary

Euclid provides features that support abstract data types,
but does not strictly speaking provide a true data abstraction
mechanism. With modules, the Euclid designers struck a balance
between providing abstraction capabilities and ensuring that the
capabilities provided could be fairly easily implemented. In
particular, Euclid could have provided further capabilities in
the areas of enforceable separation between abstract definition
and representation, specifying the relationship between abstract
definition and representation, type parameters in modules,
operator extensions, and scope restrictions on identifiers.

-7-

ABSTRACT DATA TYPES IN EUCLID

References

[Ambler et al.77]
A.A. Ambler, D.I. Good, J.C. Erowne, W.F. Burger, R.M. Cohen,
C.G. Hoch, and F.E. Hells; Gypsy: A Language for
Specification and Implementation of Verifiable Programs;
SIGPLAN Notices 12,3 (March 1977) pp. 1-10.

[Dahl et al.68]
O.^J. Dahl, B. Hyhrhaug, and K. Nygaard; The Simula 67 Common
Base Lanquage; Norwegian Computing Center, Oslo (1968).

[Geschke et al.77]
C.M. Geschke, J.H. Morris, and E. H. Satterthwaite; Early
Experience with Mesa; to appear in CACM.

[Guttag et al.76]
J.V. Guttag, E. Horowitz, and D.R. Musser; Abstract Data
Types and Software Validation; USC Information Sciences
Institute Technical Report (1976).

[Horning7 6]
J.J. Horning; Some Desirable Properties of Data Abstraction
Facilities; Proceedings of Conference on Data: Abstraction,
Definition and Structure, SIGPLAN Notices 11, Special Issue
(March 1976) pp. 60-62.

[liskov et al.77]
B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert;
Abstraction Mechanisms in CLU; to appear in CACM.

[Mitchell and Wegbreit76]
J.G. Mitchell and B. Wegbreit; A Next Step in Data
Structuring for Programming Languages; Proceedings of
Conference on Data: Abstraction, Definition and Structure,
SIGPLAN Notices 11, Special Issue (March 1976) pp. 69-70.

[Wegbreit75]
B. Wegbreit; The Treatment of Data Types in ELI; CACM 17,5
(May 1974) pp. 251-264.

[Wulf and Shaw73]
W.A. Wulf and M. Shaw; Global Variable Considered Harmful;
SIGPLAN Notices 8,2 (February 1973) pp. 28-34.

[Wulf et al.76]
W.A. Wulf, R.L. London, and M. Shaw; Abstraction and
Verification in Alphard; Carnegie-Mellon University (also USC
Information Sciences Institute) Technical Report (1976).

-8-

ISOLATION OF MACHINE DEPENDENCIES IN EUCLID

Edward G. Aseltine and Henry Spencer

Abstract: The programming language Euclid was designed for
programming such software as operating system kernels, I/O
routines, and storage allocators. These applications require
access to low level machine details. Euclid makes a serious
effort to limit machine dependencies and to isolate them in
readily identifiable sections of code. This paper surveys the
machine dependencies of Euclid and assesses the effectiveness of
the isolation mechanisms.

Contents
1 Introduction
2 Machine-Dependent Modules and their Contents

2.1 Machine-Dependent Records
2.2 Variables at Fixed Addresses
2.3 Machine Code Routine Bodies
2.4 Data Addresses
2.5 Extended Characters
2.6 Specified Representations

3 Storage Structure
4 Odds and Ends

4.1 Character Set
4.2 Type Converters
4.3 More Machine Defined Quantities

5 Summary

1 Introduction

If a language is to allow access to the underlying machine,
knowledge and control of representation become essential. The
approach taken in Euclid involves language-defined
representations for the values of certain types given in terms of
a hypothetical binary machine with implementation-dependent
parameters. The hypothetical binary machine is somewhat loosely
defined, but includes virtually all common ("standard")
architectures. The behavior of programs at the machine
interfaces, i.e. in sensitive contexts, is then defined in terms
of these standard representations.

This paper examines Euclid*s machine-dependent features under
three categories: those isolated within machine-dependent

-9-

ISOLATION OF MACHINE DEPENDENCIES IN EUCLID

modules, those relating to the storage structure of the machine,
and others. Each feature is examined with regard to its
capabilities, its potential for misuse, and the verification
problems it poses.

2 Machine-Dependent Modules and their Contents

Euclid's main device for the isolation of machine dependency
is the machine-dependent module. Semantically the machine-
dependent module is a normal module, except that it is clearly
marked machine dependent and that it may make use of certain
machine-dependent features not otherwise permitted. Since the
machine-dependent module itself is one of these features, any
module containing one must in turn be machine-dependent.
However, since variables of types exported from machine-dependent
modules can only be manipulated by exported routines, these
routines serve to encapsulate the machine dependencies, and a
module that imports a machine-dependent module need not itself be
machine-dependent.

The features available only within a machine-dependent module
are machine-dependent records, variables at fixed addresses,
machine code routine bodies, uses of "StorageUnit.Address", type
converters involving types with implementation-dependent
representations, and extended characters of the form $ddd. With
one exception discussed later, the internal representations of
values are visible only within machine-dependent modules.

2.1 Machine-Dependent Records

A machine-dependent record is a restricted form of record
that allows specification of the position and size of each
variable field. Its purpose is to allow clean access to hardware
defined data structures such as program status words and device
registers.

The machine-dependent record does allow the overzealous bit-
twiddler to try to "improve" on Euclid's packed option. This
could introduce unnecessary machine dependency into what might
otherwise be a machine-independent module. The major obstacle to
such misuse is that a machine-dependent record must be declared
in a machine-dependent module and must be explicitly exported if
it is to be known outside that module. In addition, since one
must also export all operations on such a machine-dependent
record, any machine dependency is reasonably well confined.

The machine-dependent record does present a minor
verification problem in that its structure must be checked to
ensure that it accurately reflects the hardware-defined data
structure. At some stage, this check must be done by hand since
the information needed to check a machine-dependent record
definition is derived from the hardware specifications.

-10

ISOLATION OF MACHINE DEPENDENCIES IN EUCLID

2.2 Variables at Fixed Addresses

Euclid permits variables within a machine-dependent module to
be declared at fixed machine addresses. This allows access to
such things as device registers and interrupt vectors, which have
locations fixed by the hardware, and also allows linkage to
machine code routines.

However, in allowing access to data and code defined external
to Euclid, variables at fixed addresses also provide the ability
for Euclid routines to interfere with other software running in
the same memory, as well as with compiler space allocation.
Abuse is limited by the requirements that such variables (1) be
declared only within machine-dependent modules and be explicitly
exported, (2) be of a type that has a standard representation,
and (3) not overlap any other Euclid defined variable.

Variables at fixed locations suffer from the same
verification problem as machine-dependent records in that
consistency with the hardware must be verified. Also,
difficulties are introduced by hardware-caused side effects
inherent in references to certain locations. Such side effects,
including triggering of device operations and auto-incrementing,
occur in many machines.

2.3 Machine Code Routine Bodies

Euclid allows a routine declared within a machine-dependent
module to have a body consisting of a sequence of machine
instructions rather than Euclid statements. This provides an
escape from Euclid in cases where a machine-specific operation
must be performed or especially high efficiency is required.

Abuse of this feature is restricted by several factors.
First, access to machine code requires an entire routine
definition. Second, such routines must be declared in machine-
dependent modules and explicitly exported. Finally, the machine
cede representation given in the Euclid Report (a series of
manifest constants bracketed by the keywords code and end) is
inconvenient and this discourages its use. (It is in some ways
unfortunate that the Report permits extension of the code
syntax.) Verification of machine code routine bodies is generally
very difficult.

2.4 Data Addresses

Euclid makes addresses of arrays of "StorageUnit" available
in storage allocators. Abuse of this feature is limited by the
fact that these are numbers (not pointers) and by the restriction
to machine-dependent modules. Verification is potentially very
difficult, especially if the storage allocator does inherently
machine-dependent arithmetic on such numbers.

-11-

ISOLATION OF MACHINE DEPENDENCIES IN EUCLID

2.5 Extended Characters

The use of the $ddd convention for specifying characters
provides a way of handling unprintable characters at the cost of
specifying them in terms of their hardware representation. The
restriction of this feature to machine-dependent modules controls
any abuse, and verification should not present major problems.

2.6 Specified Representations

In sensitive contexts the Euclid Report requires that a
type's standard representation be specified, either by the Report
or explicitly by the implementation. Otherwise, the
i it pie mentation is free to use any representation, provided it is
converted to the specified representation in sensitive contexts.

Abuse of the knowledge of representations is limited by the
restricted contexts in which the representation is visible. The
only problem associated with this will be discussed in Section
4.2.

3 Storage Structure

The hypothetical Euclid machine has a basic unit of sto
allocation called a "StorageUnit". "StorageUnit" is a stan
"space-filling" type that consists of a fixed-length sequenc
bits on which no operations are defined. The number of
within a "StorageUnit" is implementation defined and given by
pervasive constant "StorageUnit.sizelnBits".

There are several machine dependencies in Euclid related
machine's basic storage structure and available in suppos
machine-independent contexts: the built-in components "size"
"alignment", the standard component "StorageUnit.sizelnBits",
standard simple type "AddressType", and the "Index" componen
collections. "size" and "alignment", which are implic
declared components of all types, depend on the sto
representation of the type. "StorageUnit.sizelnEits" speci
the (machine-dependent) number of bits in a "StorageUn
"AddressType" is an unsigned subrange of integer, large enoug
hold a full machine address, i.e., a value returned by
function "StorageUnit.Address". The function "Index" is
standard component of collectibn variables, intended for add
manipulation in zones, that accepts a pointer to the collecti
object type and returns an integer version of the pointer. T
features are useful mainly for storage allocation, notably
programmer defined zones.

rage
dard
e of
bits
the

to a
edly

and
the

t of
itly
rage
fies
it",
h to
the

a
ress
on' s
hese

in

The possible abuse of these features arises from their being
machine-dependent quantities that are available without
restriction. A routine that is not marked as machine-dependent
may make use of them, thus becoming in reality machine-dependent.
A solution, albeit a somewhat stringent one, would be to allow
access to these quantities only within machine-dependent modules.

-12-

ISOLATION OF MACHINE DEPENDENCIES IN EUCLID

4 Odds and Ends

The remaining machine dependencies in Euclid include the
ordering and representation of the character set, type
converters, and some more machine defined quantities.

4.1 Character Set

Because there is no universally accepted standard, Euclid
deliberately does not specify the character set to be used in its
implementations. This means that the ordering of variables of
type "char" is implementation dependent, although use of this
ordering is not restricted to machine-dependent modules. Thus,
use of ordering in (1) comparisons of characters, (2) subranges
of characters, or (3) the "Chr" or "char.Ord" functions will in
general result in non-portable programs. The programmer can
assume only

$a < $b < .. . < $z
$A < $B < • . . < $Z
$1 = char.Succ($0)
• • •

$9 = char.Succ($8)

{Despite the best of intentions about the Euclid Report and the
Euclid Proof Rules defining the same language, the ordering of
the alphabet and of the decimal digits as characters is specified
in the Proof Rules, but not in the Report itself.) As mentioned
above, use of extended characters of the form $ddd is restricted
to machine-dependent modules.

4.2 Type Converters

Euclid provides for breaches of the type system via type
converters, but attempts to restrict their use by making them
cumbersome to work with. The source type and target type must
have the same size, and neither can be parameterized. If either
type has an implementation-dependent representation, the type
converter can only appear in a machine-dependent module. A type
converter may not be referenced in the scope in which it is
automatically declared, and must be explicitly imported into any
inner closed scope that references it.

4.3 More Machine-Defined Quantities

Euclid provides standard types "unsignedlnt", "signedlnt",
and "string". The quantities "unsignedlnt.last",
"signedlnt.first", "signedlnt.last", and "stringMaxLength" are
implementation-dependent (if not machine-dependent), but their
use is unrestricted. "unsignedlnt" and "signedlnt" could be
eliminated in favor of explicit subranges. Removal of
"stringMaxLength", which is needed as a bound in the definition
of "string", however, would be very difficult.

-13-

ISOLATION OF MACHINE DEPENDENCIES IN EUCLID

5_Surnmary

As a system programming language, Euclid must make low level
machine features available. For portability, however, these
machine-dependent features should be isolated and readily
identifiable. Isolation of machine dependencies has not been
completely achieved. The machine-dependent module isolates many
machine-dependent features, but the language leaves a number of
loopholes that will make transporting and verifying Euclid
programs difficult.

-14-

READABILITY AND WRITABILITY IN EUCLID

Jim des Rivieres and Henry Spencer

Abstract: Neither readability nor writability of programs were
major design goals of Euclid, yet both are obviously important
considerations in determining how effectively the language can be
used. This paper considers the influence of various Euclid
features on readability and writability.

Introduction

Euclid's principal goal of verifiability has a major impact
on the desired attributes of readability and writability. To
further verification, more of the information needed for
understanding and maintenance is made explicit in Euclid
programs; this information should also greatly improve
readability. On the ether hand, the Euclid designers expected to
sacrifice some writability to improve verifiability, since more
program text is required to make this information explicit.

This paper discusses the influence of individual Euclid
features on readability and writability. We do not attempt to
define these notions formally, since the boundary is somewhat
fuzzy. (Hew exactly does one classify features which ease the
writing of readable code?) We concentrate on those aspects that
are comparatively new in Euclid, and avoid discussion of such
questions as why the case statement is superior to the computed
goto.

The order of discussion and the numbering of sections
correspond to those of the Euclid Report.

3 Notationc Terminology, and Vocabulary

3. 1 Vocabulary

Long identifiers containing breaks, such as those allowed by
Euclid, can significantly increase readability. Euclid
eliminates a possible source of errors in such identifiers by
ignoring breaks when checking for redeclaration, thereby

-15-

READABILITY AND WRITABILITY IN EUCLID

prohibiting the use of identifiers that are equivalent except for
breaks.

T here
lowe r to
chara cter
case to f
or 1 ower
vccab ular
langu age
writt e n.

are some unresolved points when using the change from
upper case to indicate a break. It will probably be a
istic (i.e., frequently recurrent) error of upper/lower
orget whether the first letter of an identifier is upper

case. While the Report carefully specifies that the
y is not the character set, it would still be useful for
standardization to state in what case keywords should be

The comment convention of
the often cited problems of
Bracketing comment symbols hav
"runaway comments" if the right
Also, their writability is infe
of-line convention for short c
closing bracket. For large b
improve if the comment delimiters

Euclid is quite orthodox and has
bracketing comment symbols,

e the writability problem of
comment delimiter is omitted,
rior to that of a symbol-to-end-
cmments since they require a
locks of text, readability would
were more conspicuous.

3.3 Lexical Structure

Automatic semicolon insertion should make Euclid programs
easier to write by eliminating the characteristic error of
omitting trailing semicolons.

The end brackets for all control constructs, blocks, records,
and modules improve readability by making the program structure
mere explicit, and as such should be less error-prone. end
brackets fer control constructs similarly improve writability by
eliminating special cases when adding or deleting statements.

4 Identifiers, Numbers, and Strings

The representation for octal and hexadecimal constants is
good except for a characteristic writability error with
hexadecimal numbers. Because the first digit of a hexadecimal
number must be a decimal digit, "E0#16" must actually be written
"CEO#16".

The character constant convention is poor in two respects.
Readability is impaired by the density of "$", which overpowers
most other characters; a low-density character like "'" would
have been preferable. There is also a writability problem due to
the unusual, unfamiliar convention.

5_Manifest Constants

the availability of expressions as manifest c
improves readability by making the relationship between c
explicit and by reducing the need for extra va
Expressions as manifest constants also improve writabi

onst ants
onstants
riables.
lity by

-16-

READABILITY AND WRITABILITY IN EUCLID

reducing the need for hand calculations, and improve both
readability and writability by facilitating parameterization of
types.

6 Data Types

Free variables are strictly prohibited from type declarations
by the Euclid Report. There are, however, situations where free
variables are absolutely necessary, such as collection names in
the declaration of pointer types. This is a distinct problem
with at least the wording of the Report, and is being fixed.

The built-in facilities for getting at attributes of types,
e.g. "unsignedlnt.last" and the "IndexType" component of array
types, make Euclid programs easier to read by providing a
consistent way of referring to attributes for related types. The
rule for when to capitalize built-in components, however, seems
capricious at best. Built-in facilities also make Euclid
programs easier to write by providing facilities that otherwise
would have to be constructed by the user, in some cases clumsily.

The "type-of" component of variables and constants is named
"itsType" instead of the preferable ’’Type" because type is a
reserved word.

6.1 Simple Types

By restricting the programmer to more straight-forward
constructs, the absence of type and routine variables is a great
asset for understandability.

6.1.1 Enumerated Types

The uniformity of reference to "T.Succ(X)" and "T.Pred(X)"
must be weighed against the clutter introduced by requiring the
type names.

6.2.1 Array Types

Mu Iti-dimensional arrays must be formed by having arrays of
arrays. Although the decision to eliminate multidimensional
arrays is understandable given the types of programs for which
Euclid was designed, their absence may have minor negative
effects on both readability and writability.

6.2.2 Record Types

Allowing constants in records allows relevant information to
be grouped together, thus improving readability.

-17-

READABILITY AND WRITABILITY IN EUCLID

There are some possible characteristic errors associated with
record variants. A minor one is writing else instead of
otherwise. Two more serious ones, arising from not really
thinking of variants as parameterized types, are forgetting to
include the variant tag in the parameter list and forgetting- to
give a parameter list when declaring variables of type 11T (any) ".

6.2.3 Module Types

The module serves as an encapsulation mechanism, and as such
potentially offers great gains in readability. There are,
however, some problems with the two distinct ways of
instantiating modules (as discussed in the "Abstract Data Types
in Euclid" paper): modules exporting routines and types but
having no local variables exported, and modules exporting no
types but exporting variable components. The two different
usages, and the unfortunate possibility of combinations, hurt
readability by increasing the complexity of the language.

The explicit flagging of machine-dependent modules makes
machine dependencies more clearly identifiable, and thus
increases readability. (A discussion of how easily identifiable
the different machine dependent features are appears in the
"Isolation of Machine Dependencies in Euclid" paper.)

6.2.4 Machine-dependent Records

The parentheses surrounding the at clause are a good,
readable way of introducing a third entity into the Pascal-style
declarat ion.

6.2.5 Set Types

xor and * seem to be unnatural choices for set opeator
symbols,,

6.2.6 Pointer and Collection Types

The requirement of declaring
writing in simple cases of dynamic
facilities for storage allocation
allocation routines easier to write
defined storage allocation rout
routines to write. The resulti
understandable due to the standard
to construct such routines.

a collection will mean more
variable allocation. Explicit
, however, should make storage
in general, although user-

ines will still be complex
ng code should be more
set off primitives with which

The use of collections improves readability by allowing the
user tc group related dynamic variables, e.g., collections named
"EritishCitizens" and "CanadianCitizens".

-18-

READABILITY AND WETTABILITY IN EUCLID

The availability of a built-in reference count mechanism
improves both readability and writability by obviating explicit
deallocation where only simple reference counting is needed.

6.3 Parameterized Types

The use of parameterized types improves writability by
eliminating the need for writing repetitive code to handle
similar functions for different data types. Parameterized types
thus solve the Pascal problem of needing separate procedures to
perform the same function for arrays of different ranges
[Habermann73]. The strong typing of parameters helps control
possible abuse of parameterized types.

6.4 Type Compatibility

The type compatibility rules given in the Report, although
precise, are hard to understand. The Report should perhaps
include a simpler overview discussion such as that in [Popek et
al.77] to explain the purpose of the rules.

7 Declarations and Denotations of Constants and Variables

For arguments similar to those for keyword versus positional
parameters, the syntax of structured constants is hard to read
and error-prone to write, especially for constants of record
types. Also, there is no way to specify that the length of an
array constant is to be taken from the length of the value list.

The initialization of variables in declarations makes
programs mere readable as well as writable by putting relevant
information together.

Bindings improve readability by binding identifiers to the
relevant data object, thus improving clarity and reducing
clutter. When used like the Pascal with statement, bindings also
improve writability by permitting abbreviation. The lack of
uniformity between the single binding syntax and binding-list
syntax hurts writability (specifically modifiability).

7.3 Scope Rules and Importing

The complexity of the scope rules will cause problems in
writing Euclid programs.

In general, imports lists improve readability at the expense
of writability. Forcing the user to specify all imported
variables makes interfaces explicit, but requires extra code. If
"X" imports MY" and "Y" imports "Z", "X" must also import "Z".
This will make the program harder to modify, as well as adding to
the length of the imports list. Since imported items are
constant by default, the clause »imports (var X,Y)” imports "Y"

-19-

READABILITY AND WRITABILITY IN EUCLID

as a constant, which is not what programmers used to Pascal
declarations would expect,

£fi£vasive seems a mixed blessing. Its use can improve
readability by reducing imports lists to the important items.
The inability to override a pervasive declaration in an inner
scope, however, makes it impossible to write an inner scope
independently of its enclosing scope.

8 Expressions

The use of operator precedences as well as the particular
levels should reduce high-persistence APL-like precedence errors
(see [Gannon and Horning751), help eliminate parentheses, and
generally contribute to reading and writing clarity.

8.1.3 Relational Operators

The ability to test explicitly whether a value is within
range with the in operator is a definite asset to both
readability and writability.

8.1.4 Other Operators

The logical implication ("->") operator makes complex
assertions both more readable and more writable.

The conditional and and or operations can eliminate nested if
statements, and thus contribute to both reading and writing
clarity. For programmers unfamiliar with them, however, they
initially reduce readability since they are not as explicit about
control flew as are nested if*s.

9 Statements
—-— — ——"*r

The inability to determine from a call which arguments are
variable parameters, and hence subject to modification, hurts
readability.

9.1.3 Escape Statements

Proper use of escape statements should generally make
programs both easier to read and easier to write by providing
more natural specification of program control. Escapes provide
the potential for misuse, however, if the user is too tricky.

The when clause improves both readability and writability by
providing a clearer notation for escape conditions.

-20-

READABILITY AND WRITABILITY IN EUCLID

9.1.4 Assert Statements

Although they may cause run-time checks, assertions are a
major aid to readability by concisely describing the meaning of a
routine. The ability to make the body of an assertion a comment
permits using non-Euclid constructs in assertions, helping both
readability and writability by allowing more descriptive
assertions.

9.2.1 Compound Statements and Elocks

Allowing declarations in compound statements can increase
both readability and writability by putting declarations closer
tc their use. This also allows more precise use of bindings.

9.2.2 Conditional Statements

The provision of elseif can reduce deep nesting of if*s, and
as such improves both readability and writability. It does
introduce the characteristic error of accidentally putting a
blank between the "e" and the "i".

As with variant records, there is a possible characteristic
error of writing else rather than otherwise in the case
st atement.

9.2.3 Repetitive Statements

The ability provided by escape statements to write a loop
executed "n and a half" times is an asset for both readability
and writability, as mentioned above. Generators similarly
provide more natural specification of program control.

10 £ 11 Routines

The use of positional, instead of keyword, parameters hurts
readability somewhat and could be more error-prone. On the other
hand, positional parameters are less verbose. The use of
parameter should make calls easier to read.

The elimination of side effects in functions may make some
functions less natural to write, but is a big help for
understandability.

If a routine has a forward definition, the parameter and
import specifications must be placed in the forward definition
itself, not where the routine is actually defined. Thus,
information about a routine can be greatly separated, hampering
readability.

-21-

READABILITY AND HRITABILITY IN EUCLID

References

[Gannon and Horning75]
J.D. Gannon and J.J. Horning; Language Design for Programming
Reliability; IEEE Transactions on Software Engineering SE-1,2
(June 1975) pp. 179-191.

[Habermann73]
A.N. Habermann; Critical Comments on the Programming Language
Pascal; Acta Informatica 3 (1973) pp. 47-57.

-22-

EUCLID AND PASCAL

Ted Venema and Jim des Rivieres

Abstract: Euclid was intended for writing system programs that
cculd be verifiable by state-of-the-art verification methods.
Since verification was not an explicit goal in the design of
Pascal, it is not surprising that this gave rise to differences
between the two languages. The Euclid designers intended to
change Pascal only where it fell short of this goal. This paper
examines differences in the two languages in the light of this
objective. These differences are roughly grouped under the
headings verification, system programming, and user-oriented
changes.

Contents
1 Verification

1.1 Aliasing

2

3

1.1.1 Open and Closed Scopes
1.1.2 Elimination of Aliasing due to

Overlapping Variables
1.2 Pascal Verification Holes
1.3 Functions and Side Effects

System Programming
2.1 Machine Dependencies

2.1.1 Standard Representation of Values
2.1.2 Fixed Address Variables
2.1.3 Machine Language Code

2.2 Type Converters
2.3 Dynamic Storage Allocation
2.4 Minor Changes

User-oriented Changes
3.1 Data Types

3.1.1 Record and Module Types
3.1.2 Parameterized Types
3.1.3 Standard Type Components

3.2 Control Structures
3.3 Constants
3.4 Variable Bindings
3.5 Operator Precedence

-23-

EOCLIE ANE PASCAL

1 Verification

The basic method for verifying Euclid programs is an
inductive assertion one similar to that used for Pascal [Hoare
and Wirth73]. Those features present in both Euclid and Pascal,
tut different in Euclid due to the verification requirement, will
be the focus of attention in this paper. Constructs added to
Euclid specifically for verification will not be discussed,
since they in general have no Pascal counterpart.

1.1 Aliasing

Aliasing is the use of two names to refer to the same
variable. Aliasing occurs within most block structured languages
and is illustrated in the following Pascal example:

var I:integer;
procedure P(var J:integer);

begin
J:=2*I
end;

l: = 2;
P(I)

Within t
variable.

For
to prove
of the pr
In partic
as specif
s ynt actic
in "Q"
verifier
example
p aram eter
during th

1.1.1 Ope

refer to the same

might be required
I ". Examination

i inde ed the case.

he invocation of "P" , both "IH and "J"

the example given above, the verifier
that "P" does not affect the value of 1,1
ocedure "P” would indicate that this is
ular, an application simply of the axiom of assignment
ied by Hoare [69] shows that for any postcondition "Q" ,
ally substituting n2*In for every free occurrence of "J"
places no restrictions on "I", thereby allowing the
to assume that "I" is unchanged. However, in the
if the formal parameter "J" is bound to the actual
"I", then the assertion that "I"

e execution of "P" is false.
remains unchanged

n and Closed Scopes

The elimination of aliasing caused several major changes from
Pascal. The first of these is the distinction between open and
closed scopes, together with associated scoping rules for each.
Pervasive constants are available in all enclosed scopes, open or
closed. Open scopes are begin end blocks, component statements
of if statements, elements of case statements, and loop or for
statements. When an open scope is entered, the identifiers
available in the immediately enclosing scope are automatically
available in the open scope.

W hen
varia ble s

a closed scope (routine or module) is entered, no
are automatically available from the enclosing scopes;

-24-

EUCLID AND PASCAL

varia
of a
para m
impor
routi
param
ident
same.

bles must be explicitly imported. Conceptually, at the time
routine call or module instantiation, there is an "extended
eter list" composed of the union of the actual parameters,
ted variables and constants, and pervasive constants. A
ne call is legal only if the variables in the extended
eter list do not overlap. This reguires that no two
ifiers of variables in the extended parameter list be the

Recoding the earlier example in Euclid, we have

var I:signedInt
procedure P(var J:signedInt) =

imports (var I)
begin
J:=2*I
end

I: = 2
P (I)

The procedure invocation "P(I)" is illegal since the extended
parameter list (1,1) contains duplicate elements.

1.1.2 Elimination of Aliasing due to Overlapping Variables

Unfortunately, scoping restrictions are not sufficient to
resolve all occurrences of aliasing. Consider, for example, the
following Euclid program:

procedure Assign(var Left,Pight:signedInt) =
begin
Left:=Right
end

Tc avoid aliasing, any call to "Assign" where "Left" and "Right"
are bound to the same or overlapping variables must be
prohibited. In many cases the compiler can check this. However,
if "A" is an array, "Assign (A (I),A (J))" is only legal when
"I" ^ "J", which is not generally determinable at compile time.
Euclid reguires that the compiler generate a legality assertion
for the verifier if it is unable to determine that "I" f "J" for
all executions of the call. This assertion will be compiled into
code if the checked option is specified.

The aliasing problem in
parameters by reference rather
value, the parameter would be
no aliasing problem exists.

closed scopes arises from passing
than by value. If passed by
constant in the closed scope, and

A collection is a group of variables of the same type. Just
as an index value uniguely determines an element of an array, so
a pointer into a collection uniquely determines a variable of the
collection. Ey requiring all dynamic variables to be allocated
as part of a collection and by enforcing the collection/array
analogy, Euclid severely constrains the use of pointers and
hopefully avoids the usual verification pitfalls associated with

-25-

EUCLID AND PASCAL

them. As with arrays, there remain aliasing problems that cannot
be resolved at compile time.

1.2 Pascal Verification Holes

Pascal record variants are not type-safe in that the type of
the variant for a particular record instance is not known at
ccmpile-time. Pascal allows assignment to a record variant
without checking whether that assignment is valid. For example:

type Person =
record

ftame:alfa;
case Sex:(Male,Female) of

Male:(Weight:integer);
Female: (Height:integer) ;

end;
var Mary:Person;
Mary.Sex := Female;
Mary.Weight := 180

The second assignment is illegal since the current record variant
is female. Although in this case a smart compiler could spot the
error, this is not generally possible at compile-time. Euclid
eliminates this problem by allowing assignment to a variant only
within a discriminating case statement. A similar record
structure in Euclid would be:

type Person(Sex: (Male,Female)) =
var Name:string
case Sex of

Male => var Weight:unsignedlnt end Male
Female => var Height:unsignedlnt end Female

end Person
var Mary:Person(Female)
with X bound to Mary case Sex of

Male => ...
Female => X.Height:=180

end case

The compiler can easily ensure that illegal assignments cannot
occur.

Here, as elsewhere in Euclid, a design decision was made to
ensure that only lccal information about the program was needed
for verification. Similarly, the compiler need only check each
closed scope boundary to ensure that proper control over
visibility of identifiers is maintained.

Another aspect of Pascal that presents verification problems
is procedure parameters. For example, the following is legal in
Pascal:

-26-

EUCLID AND PASCAL

procedure P{procedure Q; Which:integer);
begin
if Which = 1 then

0(X,Y)
else

' Q(X)
end

Guaranteeing the correctness of this program involves checking
that for all calls to "P", the procedure "Q" has the appropriate
number of parameters for the corresponding run-time value of
"Which”. Euclid avoids this problem by not allowing procedures
tc be passed as parameters. For similar reasons, types are
disallowed as parameters. Both routine and type parameters were
felt to be difficult constructs that provided little advantage at
a high cost in verification. Some of the uses of routine and
type parameters are subsumed by modules, generators, and zones.

1.3 Functions and Side Effects

Pascal recommends against the use of functions that have side
effects, but does allow them. Although it is possible to verify
programs that allow functions (and hence expressions) to have
side effects, this becomes much more difficult. In particular,
the axiom of assignment specified by Hoare [Hoare69] must be made
much more complicated. As a result, side effects in functions
were disallowed in Euclid.

While disallowing side effects in functions makes Euclid
programs easier to verify, there are still cases where such side
effects seem necessary for a "natural" solution. For example,

while Searching do
begin
S
end

where "Searching" is a function that returns a Boolean value
indicating whether or not elements in the series remain. If the
value is true, "Searching" has the side effect of setting a
global variable to the value for the next element.

A possible solution that avoids side effects is tc factor
the function into two parts: a Boolean function "Anymore" that
determines if there are any more elements and a procedure
"Getnext" that gets
searching involves
determining if there

the next element. Since m many cases
first attempting to get an entry and then
are any left, this would be coded as:

-27-

EUCLID AND PASCAL

Getnext
while Anymore do

begin
S
Getnext
end

But repeating the call to "Getnext” is undesirable. This can be
avoided by using, instead of a while or a repeat until
statement, a looping construct where the exit statement can be
placed anywhere in the loop. As a result, Euclid has discarded
the Pascal while and repeat until statements in favour of a loop
with possibly multiple exit statements. This example in Euclid
then becomes

loop)
Getnext
exit when not Anymore
S
end loop

With this looping construct,
functions with side effects in
only tolerable, but preferable
be the easiest to understand of
Euclid also provides generators

the restriction of not allowing
cases such as this becomes not
since the Euclid version seems to
the three versions presented,

for more general iteration.

2 System Programming

2.1 Machine-Dependencies

Since Euclid was designed for programming such systems as
operating system kernels, it was necessary to provide access to
the underlying machine. Pascal does not allow such access. The
approach to machine-dependent facilities in Euclid reflects the
widely held opinion that machine dependencies should be the
exception to the rule. The unnecessary use of machine-dependent
facilities in Euclid is discouraged, principally by cumbersome
mechanisms, and the necessary uses are in general isolated and
readily identifiable. The "Isolation of Machine Dependencies in
Euclid" paper provides a more complete discussion of the machine
dependencies of Euclid and assesses the effectiveness of the
isolation mechanisms.

2.1.1 Standard Representation of Values

In both Pascal and Euclid programs, the internal
representation of values is generally irrelevant. The system
software for which Euclid was designed, such as operating system
kernels, however, requires access to the underlying machine.
Euclid defines the representations of values of certain types in
terms of a hypothetical binary machine with implementation-

-28-

EUCLID AND PASCAL

dependent parameters, and then defines the bahavior of programs
in sensitive contexts in terms of these standard representations.

The only types given language-defined standard
representations are those that have a "natural” implementation on
the hypothetical machine. These are all enumerated types
(including "Boolean" and "char"), subrange types with a non¬
negative first value (including "unsignedlnt"), sets of
enumerated or subrange types, "StorageUnit", and all unpacked
array types.

The user can define the internal representation of records by
using machine-dependent records. These records can have both
constant and variable components. Variable components must be
given a starting displacement in "StorageUnit"s and a range of
bits, and their type must have a standard representation.
Constant components can have neither size nor position specified.

2.1.2 Fixed Address Variables

Euclid allows a variable to be declared at an absolute
machine address provided the type of the variable has a standard
representation. The address must
integer. For example.

be a manifest non-negative

var Psw (at 177776#8) : ProgramStatusWord

declares a variable at memory location 177776 (octal).

2.1.3 Machine Language Code

A
very
f u net
wr itt
i n t e g
end.
This
the m
param
repre

ccess to t he mach ine'
simple a lbeit crud e f
ion body. a sequence of
e n. The s ynta x provided
er const ants can be
The meaning of these con
is the only mecha nism

achine's instructions or
eters and results of ma
sentations.

s instruction set is available in a
crm. Instead of a procedure or
machine language instructions may be
is minimal: a list of manifest
placed between the keywords code and
stants is implementation defined,
by which Euclid programs can access
invoke a non-Euclid routine. The

chine coded routines must have known

2.2 Type Converters

Type converters allow breaches of the type system so that a
value of one type can be used as a value of some other type.
Both types must have the same size values, and both must have
standard or implementation defined representations.

-29-

EUCLIE AND PASCAL

2.3 Dynamic Storage Allocation

Pascal provides dynamic storage allocation, but does not
allow the user to define his own allocation scheme. Euclid
provides programmer control over storage allocation via zones.
The zone has three special components: an internal variable from
which the space is obtained, an "Allocate" procedure, and a
"reallocate" procedure.

The zone deals only with blocks of "StorageUnit"s and is not
concerned with the types of the objects being allocated. The
user can define collections that are allocated in a particular
zone. The collection components "New" and "Free" provide this
interface.

Collections are allowed whose storage deallocation is handled
simply by reference counts. reference counted collections are
straight-forward to implement due to the distinction between
"New"/"Free" and "Allocate"/"Deallocate".

Although the attempt to provide the user with dynamic storage
allocation facilities is commendable, there are several
unsatisfactory aspects of the dynamic allocation mechanism in
Euclid:

(1) It is impossible to define a zone that can periodically
compact its heap since there are pointers into it that
are only known outside the zone.

(2) A collection is allocated in a zone, and a zone must
have another collection as one of its components.
Fortunately, if the zone is not specified for a
collection, a standard system zone is supplied. In most
cases, the zone never need invoke "New" or "Free" for
its collection. Rather, the collection's "Index"
component will be used to allocate pieces of a declared
array variable.

(3) Because "New" and
storage required for
by adding referenc
check for insufficie

"Free" can
a value of

e counts),
nt storage.

increase
the object
it may be

the amount of
type (e.g.,

impossible to

2.4 Minor Changes

(1) Input/output facilities are not present, since Euclid is
intended as a tool for constructing such system
software. However, I/O primitives similar to those of
Pascal could be constructed using machine-dependent
modules. The differences would be as follows:

(a) A module "M" could define I/O for only a
single, possibly parameterized type.

-30

EUCLID AND PASCAL

(b) The Pascal procedures "Get", "Put", etc.
would have to be referenced as "M.Get",
"M .Put", etc.

(c) The Pascal procedures "Read" and "Write" take
a variable number of arguments of various
types. In Euclid several simple procedures
such as "M.ReadChar", "M,Writelnt", and
"M.WriteString" would have to be used.

(2) Only integer arithmetic is supplied in Euclid.

(3) Inline expansion of Euclid routines can be indicated.

(4) Nonprinting characters are allowed in Euclid string
constants.

(5) Hexadecimal and octal numbers are allowed in Euclid.

(6) Pascal's abbreviated syntax for multi-dimensional arrays
is not provided in Euclid. Although only singly
dimensioned arrays are allowed in Euclid, the object
type of an array can in turn be an array type, thus
providing an arbitrary number of dimensions.

3 User-oriented Changes

3.1 Data Types

The powerful data types and associated type-checking rules of
Pascal form the basis of Euclid's data type facilities, although
Euclid provides for much stronger type^checking. All of the data
structuring methods of Pascal, with the exception of files, are
provided in Euclid. What follows is a discussion of some of the
enhancements made to Pascal's data type definition mechanisms.

3. 1.1 Record and Module Types

Pascal records have been generalized into Euclid records and
modules. Euclid's records may contain both constant and variable
components. Variable components may have an initial value
clause.

Perhaps the most significant extension made to Pascal is the
module structure, which can also include type, procedure, and
function components. Euclid modules are discussed in some detail
in the "Abstract Data Types in Euclid" paper.

3.1.2 Parameterized Types

Perhaps the most freguently cited deficiency of Pascal is
caused by the requirements that the index types for formal and

-31-

EDCLID AND PASCAL

actual array parameters be the same and that all
compile-time evaluable. This makes it impossible,
to have a general sorting or matrix multiplication
situation is rectified in Euclid by allowing
subrange types to be given by runtime constants,
such a subrange for an index type would have its
computed upon entry to the scope.

array bounds be
for example,

routine. This
the bounds of

An array with
array bounds

More generally, types in Euclid are allowed to have formal
parameters. Such parameters are typed constants, but need not be
manifest constants. Thus, fixed-length vectors of integers could
be defined as follows:

type IntVector(Length:unsignedlnt)
= array 1..Length of signedlnt

A 10 element vector could then be declared

var Vec:IntVector(10)

By using parameterized types, one can write a routine that
accepts or returns data objects containing variable-sized arrays,
without losing the advantages of strong type checking.

3.1.3 Standard Type Components

Euclid automatically defines several built-in components for
each type declared. These components are inherited by variables
and constants of the type. For example, all enumerated and
subrange types "T" have components "T.first", "T.last", "T.Succ",
"T.Pred", and "T.Ord"; all array types have "IndexType" and
"ComponentType" components. The parameters of a parameterized
type are alsc components. Thus, type dependencies can be
indicated without having to introduce extraneous type
identifiers.

by
For example, suppose we have a Pascal array type "A" defined

type A = arrayr 1 .. 100] of T;

If we wished
structure as a

to declare a variable
component of array "A", we

"X" that has the same
would have to write

var X : T;

From this declaration of "X" there is no explicit connection
between "X" and the array type "A". Euclid allows this relation
tc be stated explicitly, for example

type A = array 1..100 of signedlnt
var X : A.ComponentType

-32-

EUCLID AND PASCAL

Similarly if we wanted a variable "I" that took the values of the
indices of "A” together with one more value at the end, we could
write

var I : A.IndexType.first .. A.IndexType.last + 1

A type’s components are automatically inherited by its
variables and constants. Variables are also given a special
component, "itsType", which is the type of that variable. This
provides, among other things, a capability similar to the PL/I
like attribute [ANSI76]. Thus

var Y : X.itsType

declares "Y" to be a variable of the same type as "X".

3.2 Control Structures

All Euclid control structures have explicit end brackets,
which eliminates the dangling-else problem of Pascal. The elseif
construct serves to counter the plethora of end brackets required
to terminate nested conditional statements.

Pascal’s while and repeat structures are replaced by a loop
structure with conditional or unconditional exit statements that
can appear anywhere. The for statement is also enhanced to
provide more general iteration control such as iterating through
a set.

The goto and label of Pascal were eliminated in Euclid as
being undisciplined constructs that presented severe verification
problems. The new loop structure, however, together with escape
statements, provides a natural way of expressing many of the exit
conditions that resulted in the use of gotos in Pascal (see
Section 1.3 above).

3.3 Constants

Constant definitions in Euclid are more general than those of
Pascal in three ways:

(1) Constants need not be manifest.
(2) Constants can be defined by expressions, whereas Pascal

only allows optionally signed values.
(3) Constants of structured types can be defined, whereas

Pascal constants are restricted to simple types.

Both the procedural and the declarative aspects of Euclid
programs benefit considerably from these extensions.

One dangerous aspect of structured constant definitions is
the purely positional notation used to list the components: the

-33-

EOCLIB AND PASCAL

reliance cn ordering is both error prone and inconsistent with
the named components of records. The constant definition in

type Complexlnt
= record var Re,Im:signedlnt end Complexlnt

const Z:Complexlnt := (0,5)

would be better expressed as

const Z:Complexlnt := (Re:=0, Im:=5)

3.4 Variable Eindings

Euclid allows
existing variable,
declared by

an identifier to be bound to
For example, the fifth element of

part of an
the array

var A : array 1. . 100 of T

cculd be renamed as "X" by the variable binding

bind var X to A(5)

Disallowing the use of the renamed variable within the
the binding prevents this feature from introducing
problems. Variable bindings provide a more flexible and

example.

scope of
alia sing
readable

due to alternative to the Pascal with statement. For
naming conflicts, a with cannot be used to open two record
variables cf the same type.

3.5 Operator Precedence

The Pascal operators are (in order of increasing binding
strength, with equal priority operators on the same line):

=, <>, <, <=, >, >=, in
unary +, binary +, unary -, binary -, or
*, /, div, mod, and
not

In hie assessment of Pascal
precedence level as "ill-advised'*
out the logical operators and
precedence levels are:

Wirth describes the
[Wirth75]. Euclid
the unary operators

choice of
separates
, and the

->

or
and
not
=, not =, <, <=, >, >=, in, not in
binary ♦, binary -, xor
* • div, mod
unary -

34

EUCLID AND PASCAL

This more natural classification allows one to write, for
example,

A<0 or A>N

without the parentheses required in Pascal, i.e.

(A<0) or (A>N)

In addition to rearranging the precedences, Euclid provides
conditional logical and, or, and n->” operations that evaluate
their right operand only when necessary. This obviates some
nesting of conditionals. In Pascal, proper programs must not
rely on the implementation evaluation strategy.

References

[ANSI76]
American National Standards Institute; American National
Standard Programming Language PL/I, x3.53 (1976).

[Habermann73]
A.N. Habermann; Critical Comments on the Programming Language
Pascal; Acta Informatica 3 (1973) pp. 47-57.

[Hoare69]
C.A.R. Hoare; An Axiomatic Basis for Computer Programming;
C ACM 12,10 (October 1969) pp. 576-580,583.

[Hoare and Wirth73]
C.A.R. Hoare and N. Wirth; An Axiomatic Definition of the
Programming Language Pascal; Acta Informatica 2 (1973) pp.
335-355.

[Wirt h75]
N. Wirth; An Assessment of the Programming Language Pascal;
Proceedings International Conference on Reliable Software,
SIGPLAN Notices 10,6 (June 1975) pp. 23-30.

-35-

EUC1IC ANE MO PULA

David T, Barnard, W. David Elliott, and David H, Thompson

Abstract: Both Euclid and Modula are programming languages based
on Pascal and intended for writing system software such as
operating system kernels. The further goals of each language,
however, resulted in two rather different languages. Modula is
meant to be used in multiprogramming systems primarily on mini¬
computers; thus Modula aims for very small run-time support and
efficient compilation by a small compiler. Many of the Euclid
language design decisions, on the other hand, were influenced by
the authors’ overriding concern for the ability to verify Euclid
programs. This paper discusses design goals of the two languages
and the language differences that resulted. After contrasting
individual features of the two languages, modules and
multiprogramming are discussed in more detail.

Contents
1 Overview of Modula
2 General Comparison of the Two Languages

2.1 Data Types
2.2 Variable Declarations and Scopes
2.3 Control Constructs
2.4 with Statements and Aliasing
2.5 Procedures and Functions
2.6 Constants
2.7 Syntactic Issues

3 Modules
3.1 Eata Retention in Modula
3.2 Visibility of Identifiers in Modula
3.3 Storage Allocation in Modula
3.4 Euclid Modules versus Modula Modules

4 Multiprogramming
4.1 Processes
4.2 Mutual Exclusion
4.3 Synchronization
4.4 A Synchronization Example
4.5 PDP-11 Device Processes
4.6 Multiprogramming in Euclid
4.7 Evaluation of Multiprogramming Facilities

5 Summary

-36-

EUCLIE AND MODULA

1 Overview of Modula

The programming language Modula was designed primarily for
programming stand-alone systems for operating existing machines
and their peripherals. ([Wirth77a, 77b, and 77c] provide a
commendably readable and informative description of the language
itself and the rationale behind its design.) Such systems reguire
two additional sets of features not found in general purpose
programming languages in the past: features for multiprogramming
and features for operating peripheral devices. Such facilities
are inherently machine- and configuration-dependent, and as such
are not easily described abstractly. Modula attempts to
encapsulate such machine dependencies in moduleg. from whence its
name.

The Modula project was started to gain experience in the
field of multiprogramming and device handling, with the intent of
establishing a discipline for effective and reliable
multiprogramming systems design. This effort resulted in a new
language, small and very much like Pascal. Its goals of
efficient compilation, a simple compiler, and very small run-time
support seem to have been met.

The sequential operations of Modula rely very strongly on
Pascal. The two notable areas of change from Pascal are
additions: the module structure (an encapsulation mechanism
similar to the Euclid module) and multiprogramming features
(processes, interface modules, and signals). After contrasting
individual features of the two languages, modules and
multiprogramming are discussed in more detail.

2. General Comparison of the Two languages

2.1 Data Types

Both Modula and Euclid offer a small set of standard types.
Beth provide signed integers, Booleans, enumerations, and ordered
sets of implementation-defined characters. In addition to signed
integers, Euclid also provides unsigned integers and subranges of
integers, the bounds of which are implementation defined. Both
have deleted reals from Pascal's set of standard types. Euclid
provides two additional standard simple types, "StorageUnit" and
"AddressType", intended to be used in storage allocation.

Euclid provides sets over any simple type (enumerated and
subrange types, as well as the standard simple types). Modula
provides something much simpler to implement: "bits”; the number
of bits in a variable of type "bits" is intended to be one less
than the word size of the target machine. Since the base type of
Euclid's sets can be an arbitrary simple type, sets may have an
arbitrary positive number of elements (up to some implementation
limit), and the base type of the set may have a non-zerc lower
bound. Thus in general the process of code generation for

-37-

EUCLIE AND MODOIA

operations on ’’bits" is simpler than code generation for sets in
Euclid.

Both Modula and Euclid offer two structuring methods for
their standard data types: arrays and records. (Modules provide
somewhat more than simple data structuring and are discussed in
Section 3.) Euclid offers a packed option for arrays and records,
which Modula does not.

Arrays may be explicitly multidimensional in Modula. Euclid
provides only one-dimensional arrays, but these arrays may have
arrays as their base type. Thus, the Modula declaration

array 0:3, 2:6 of Boolean

corresponds to the Euclid declaration
•s

array 0..3 of array 2..6 of Boolean

Records in the two languages differ in that Modula prohibits
the Pascal variant record, while Euclid extends it. Even the
ncnvariant portions cf records are not identical, however.
Euclid allows constants as fields of records, whereas Modula does
not.

Modula has no mechanism for parameterizing types, while
Euclid does. The cost of providing parameterized types seems
quite high.

Euclid and Modula have somewhat different notions of type
compatibility. Although [Wirth77a] does not spell out what type
equality in Modula means, Modula has implemented a very
straightforward rule: any two distinctly named types are
unequal. Moreover, any anonymous record is unequal to any other
record type. In order for a value to be assigned to a variable
or a variable to be bound to an identifier, the types must be the
same. In Euclid a type identifier is considered an abbreviation
for its definition. Except for modules, after all such
abbreviations have been removed, two types are the same if their
definitions look the same. Any module type or type exported from
a module is considered to be different from any other type.
Except for a minor variation to accommodate parameterized types,
in order for a value to be assigned to a variable or a variable
to be bound to an identifier, the types must be the same.

Euclid provides built-in operations on types as well as
values of a type, while Modula provides built-in operations only
on values. Both languages have a similar set of such operations,
e.g., "inc" ("Succ" in Euclid), "dec" ("Pred"), "low" ("first"),
"high" ("last"), "integer" ("Ord"), "char" ("Chr"), and "size".

38-

EOCLID AND MODULA

2.2 Variable Declarations and Scopes

Variable declarations in the two languages are quite similar.
Declarations must appear before use, although Euclid also
provides a forward option for mutually referencing declarations.

Scoping methods in the two languages differ quite a bit.
Modula conforms to the well-known Algol 60 formula: scopes
coincide with blocks. Euclid*s open and closed scopes provide
greater flexibility, with the consequent added expense to the
compiler. Open scopes start following the keyword beginning a
structured statement, and declarations may appear almost anywhere
in a Euclid program. Statement sequences requiring declarations
in Modula must be declared in a procedure or module before use.

Variables of any type may be initialized in either language.
In Euclid any initialization is part of the declaration
statement, while in Modula an initialization part optionally
fellows the declaration section of each block.

Eoth languages further constrain Algol 60 inheritance rules
for closed scopes with import and export lists (called use and
define lists in Modula). For modules, both languages have
similar rules for importing and exporting identifiers - only
names on the corresponding list can go in or out. (Euclid
excepts pervasive identifiers, and Modula excepts standard
identifiers.) Modula goes further by disallowing access to any
of the structural information about an exported identifier. For
routines, which can only import identifiers, the two languages
differ only in the case where the optional imports (use) list is
omitted. Otherwise, anything not pervasive, a parameter, or
explicitly imported is inaccessible. In Euclid, omitting the
import list causes no identifiers to be imported; in Modula,
normal Algol 60 inheritance rules apply (unlike for modules).

2.3 Control Constructs

For the most part, Euclid and Modula provide an identical set
of control constructs. Both have deleted goto from their Pascal
base, and both have slightly modified most of the other
constructs. Both have terminating end brackets on control
constructs. The if-then-else construct is the same in both
languages. Both have added an elseif clause (elsif in Modula).

The case statements in both languages are improvements over
Pascal's version. Alternatives are explicitly delineated by
terminating keywords, thus solving the parsing problem and
improving readability. Modula uses begin and end to delimit case
alternatives, while Euclid uses "=>" and end. Euclid requires
that either each value of the case type be explicitly mentioned
in exactly one alternative or an otherwise clause be used in the
case statement. Euclid also provides a discriminating case that
must be used in evaluating variant record parts. This feature is
not needed in Modula, since variant records have been eliminated.

-39-

EUCLIE ANE MODULA

The iteration construct shows a minor but interesting
difference in the two languages. Modula provides three
statements for iteration, of which the first two are syntactic
sugar for the third: while, repeat until, and loo£ with multiple
(single-level) exits. Euclid has a loop statement that is
equivalent to the loop of Modula, but somewhat more wordy. The
Modula statement

loop
when B do Found := false e xit
StatementSequence
end

requires an if rather than an exit when in Euclid:

loop
if B then

Found := False
exit

end if
StatesentSequence
end loop

Although admittedly the while and repeat untill statements are
trivial to implement in terras of loop constructs, the addition of
the two extra constructs seems an unnecessary concession to the
Pascal tradition, especially given Modula's goal of a small,
simple compiler.

2.4 with Statements and Aliasing

Modula follows Pascal in its use of the with statement. The
with statement is used to select a variable cf a record type, so
that within a statement sequence, the qualifiers of the variable
need not be given, but rather just the field names. This is more
than just syntactic shorthand for the typing ease of the
programmer, since the compiler need only perform the necessary
address calculations for this variable once.

In their concern about aliasing, however, the designers of
Euclid went somewhat further. Bather than provide simply a
mechanism where one can ’'open” a specific variable of a
particular record type and then refer to the field names without
further qualification, Euclid provides a mechanism for renaming a
variable at the beginning of a scope. This new variable name
then exists for the duration of the scope. Address calculations
can still be performed only once, at the beginning of the scope.
Perhaps more importantly, more than one variable of the same
record type can be effectively "open" simultaneously. Since the
new names must be distinct from other names known in the
enclosing scope, no naming conflicts can occur. Moreover, this
renaming is not restricted to record variables.

-40

EDCLIE ANE MODULA

2.5 Procedures and Functions

The bodies of procedures and functions are similar in the two
languages except for the differences already mentioned, such as
name inheritance and scopes in Euclid not necessarily coinciding
with blocks. Other major differences in routines are side
effects in functions and parameter association

Euclid functions may not have side effects. Modula does not
prevent functions from exerting side effects, although functional
side effects are discouraged as poor programming practice, and no
explicit use is made of this in the defining Modula documents.
Moreover, if the use list is omitted in Modula, the amount of
information that must be maintained to ensure the absence of
functional side effects can be excessive.

It is illegal in Euclid to both import an identifier and
access it via another name through the parameter list, as in:

var C: signedlnt
• • •

procedure P (var A: signedlnt) =
imports ^C)
begin
• • •

end
• • •

P(C)

Modula does not prohibit this type of aliasing.

2.6 Constants

In Modula all constants are scalar, with one exception: one
may represent a constant of type "bits”. In Euclid, on the other
hand, constants may be declared of any type.

All constants in Modula are manifest: their values must be
determinable at compile time. As a result, storage requirements
for each module and procedure are known at compile time. In
Euclid a constant need not be compile-time evaluable; rather, it
is bound each time its scope is entered. The difference is thus
a matter of binding time.

2.7 Syntactic Issues

In order to denote a statement sequence in Pascal, a begin
block is required. Both Modula and Euclid provide simpler
statement structures in general than Pascal. Both take the view
that where one statement can go, many can. Both languages have a
recursive definition of statement requiring no additional
keywords, which is made possible by the terminating keyword on
all control constructs. Thus,

-41-

EUCLIt ANE MODULA

while B do begin SI; S2 end

in Pascal becomes

while B do SI; S2 end

or loop when not B exit SI; S2 eqd

in Modula, and

loop; exit when not E; Si; S2 end loop

in Euclid.

Another interesting improvement that Modula and Euclid share
over most other languages, although not Pascal, is the use of
semicolons as statement delimiters. Modula uses the semicolon as
a separatpr rather than a terminator, in both record field lists
and statements. However, since both record fields and statements
may be empty, according to the Modula grammar, it does not matter
whether one actually writes the semicolon after the final field
or statement. Euclid goes even further in this respect: Euclid
has a convention whereby the scanner for the language inserts
semicolons for the parser*s and the error recovery mechanism*s
benefit at the end of lines, depending on surrounding keywords.
Thus the user need type very few semicolons. The principal
problem with such a convention is that the user will very quickly
get into the habit of not placing a semicolon anywhere. When a
semicolon omission error does occur, the explanation that only
some statements need semicolons, while ethers do not, will seem
quite inconsistent.

3 Modules

Both the Modula and Euclid modules are descendants of the
Simula 67 class [Dahl et al.68] that add information hiding
capabilities to the encapsulation and data retention provided by
the Simula 67 class. In contrast to the Euclid module, which is
principally intended as a data abstraction mechanism (see the
"Abstract Data Types in Euclid" paper), the Modula module is
principally intended as a fence that establishes a static scope
of identifiers whose visibility can be controlled. The
distinction between the two notions of modules will be drawn more
clearly after a discussion of data retention, visibility of
identifiers, and storage allocation in Modula.

3.1 Data Retention in Modula

The Modula module allows local enclosed procedures to share
retained protected data objects. A module comes into existence
when the enclosing procedure (or process) is called, and vanishes
when that procedure invocation is completed. Objects declared
within a module are considered local to the enclosing procedure.

-42-

EUCLID AND MODULA

A module's data objects are thus retained after termination of
any procedures enclosed within that module.

3.2 Visibility of Identifiers in Modula

Like Euclid, Modula provides for explicit control of the
visibility of identifiers. The Modula module has use and define
lists, directly analogous to Euclid's import and export lists.
In both languages, if a module has no export (define) list, no
identifiers are exported; if a module has no import (use) list,
nothing is imported (except prevasive identifiers in Euclid and
standard identifiers in Modula).

Modula more severely limits access to variables and
structural information of the enclosed types than does Euclid.
Although it is questionable whether the ability in Euclid to
assign to an exported variable is of significant value, Modula
gees one step further and causes all exported variables to be
read-only outside of the module. The intent is that variables
belonging to a module should not actually be exported at all;
making them exportable as read-only variables obviates declaring
functions that simply yield a variable's value. The capability
to export a variable can be simulated, however, by exporting an
"Assign" routine that assigns values to that variable.

A module can export only the name of a type in Modula. In
particular, no field names are exported for records, and no index
ranges or component types are exported for arrays. Thus, the
environment external to a module has no way of knowing what the
structure of an exported type is.

3.3 Storage Allocation in Modula

There are no unnamed begin blocks in Modula. The keywords
begin and end are only used to delimit statement sequences that
constitute the actions of procedures and processes, the
initialization for a module, or the alternative actions in a case
statement. When a local scope is required, the program and data
parts must be previously written as a procedure definition and
invoked at the desired point. Although no storage allocation
need be done except at procedure or process invocation, this
prevents any dynamic allocation of storage needed only
temporarily.

3.4 Euclid Modules versus Modula Modules

The Modula module is intended to encapsulate such entities as
a scanner in a compiler or a disk store manager, i.e., program
segments of relatively large size where only a single instance
exists. Multiple instances of a Euclid module, on the other
hand, can be instantiated as needed. Herein lies the major
difference between Euclid and Modula modules.

-43-

EUCLID AND MODULA

A Euclid module can, however, be represented as a Modula
module declaration. Consider the following Euclid module
definition (this example is ’’borrowed” from [Wirth77c] and
translated into Euclid):

mgdule M
exports (P,Q)
pervasive type T = ...
var X,Y: T
procedure P (var U: signedlnt) imports (X,Y)

begin ... end P
procedure Q (Var V; signedlnt) imports (X,Y)

begin ... end Q
• • a

initially ... { initialization of instance }
end module

This is expressed in terms of a Modula module as follows:

module M;
define R, P, Q, S;
type T = ...
type R = record X,Y: T
procedure P (var W: R;

begin ... end P
procedure Q (var W: R;

begin ... end Q;

end:
var U:

var V:

integer);

integer);

procedure S (var W: R);
begin ... (* initialization of instance
end S; (* must be explicitly invoked

for each instance *)
end M;

*)

Note that the variables local to the Euclid module become record
components of a new record type in the Modula module.

The advantages of the Euclid module include (1) some
syntactic convenience in specifying procedure invocation, (2)
ease in naming procedures in that the same name may be used
inside different Euclid modules, and (3) initialization not
needing to be invoked explicitly (as in procedure "S” in the
Modula example). These are not, however, major differences,
especially in the Modula application area, where Wirth claims it
seems natural to have unique names for all operators exported
from modules [Wirth77c, p.69].

Although Modula modules were not intended as a data
abstraction mechanism, the problems in using them as such are not
inherent in the nature of modules, but rather due to other
language decisions. In particular, the lack of parameterized
types and the requirement that all array bounds be compile-time
evaluable make Euclid’s parameterized module instantiations at
best unwieldy to mirror in Modula. Consider the possible need
for a parameterized queue module where the length is to be
specified as a parameter supplied at instantiation. This is

44-

EUCLIt ANE MODULA

provided in Euclid in a straightforward manner, whereas Modula
could only provide for a limited number of cases, since each
particular maximum length would require a separate complete
module definition, with unique names for all operators.

4 Multiprogramming

Modula is explicitly designed to attack the domination of
assembly language programming in systems for operating particular
machines. Such systems require facilities for multiprogramming
and for operating peripheral devices. There are no such features
explicitly provided in Euclid, although both languages use
modules to encapsulate machine dependencies. Modula provides
processes. send and wait on signals as synchronization
primitives, a form of monitors for mutual exclusion, and device
processes. This section explains these features of Modula and
indicates how they could be provided in Euclid.

4. 1 Processes

A process in Modula is a syntactic unit that must be defined
and invoked at the outermost (main program) level. This means
that a process cannot spawn son processes, although there can be
multiple instances of a process. A process is given a fixed size
memory, so if a recursive procedure is used in a process, a
compiler directive must indicate the maximum depth of recursion.
Accordingly, when the end of the main program is reached, all
processes have been started, and an implicit guarantee can be
made that storage overflow will not occur. The storage belonging
tc a process that has terminated need not be reused since no
further storage can be allocated. There is thus no need for a
dynamic storage allocation scheme or for the management of sons
that might outlive their fathers.

A process can be in one of three states: ready, running, or
waiting on a signal. All processes that are ready or running are
linked into a ring. Scheduling will be discussed below.

4.2 Mutual Exclusion

Mutual exclusion is provided in Modula by a special kind of
module called an interface module, which is distinguished by the
keyword interface. Only one process can be actively executing
within an interface module at any point in time, as with Hoare’s
mcnitcrs [Hoare74].

There are two differences with Hoare's monitors. The first
is that different interface modules can access common external
variables, although such variables must be explicitly imported.
The second (somewhat lesser) difference is that the internal data
structures of an interface module can be exported, although this
is strongly discouraged as a programming practice. Such exported

-45-

EOCLIE ANE MODDLA

variables are read-only; any updating must be accomplished via
interface module procedures.

4.3 Synchronization

Synchronization of processes is accomplished by signals,
which correspond to Hoare's conditions. Signals syntactically
appear as variables, but do not have values in the normal sense
and are not assignable. They are operated on only by the system
functions "wait", "send”, and "awaited".

A signal has an associated gueue of waiting processes,
"wait" causes a process to be inserted into the appropriate
gueue. A rank can be specified, and waiting processes are
ordered according to the rank. "send" allows the first process
waiting in the queue (if any) to continue. When a process waits
on or signals a condition, it steps out of the domain of mutual
exclusion. "awaited" simply tests whether a particular gueue is
nonempty.

Mutual exclusion comes for free if a single processor is used
without forced time-slicing. Processor switching only occurs at
"send" and "wait" statements, and thus there is no implicit
processor switching (that is, processor switching that occurs at
arbitrary times without an explicit process directive).
(Ccmplications due to I/O are discussed later.) "send" can cause
a waiting process to gain control, while the sender simply goes
into the ring of ready processes. "wait" causes the waiting
process to be put on the appropriate queue, and a process from
the ring to be scheduled.

4.4 A Synchronization Example

We present an example illustrating the synchronization
facilities discussed above. This example shows two processes
communicating through a circular buffer. The process "Producer"
reads characters from an input device and stores them in the
buffer. The process "Consumer" removes characters from the
buffer and prints them on an output device. The system is non¬
terminating. The procedures "Read" and "Print" are assumed to be
defined in the enclosing scope.

module listinput;
use Read, Print;
interface module Bufferhandling;

define Get, Put;
const Nmax=256;
var N, In, Out: integer;

Nonempty, Nonfull: signal;
Buf: array 1:Nmax of char;

-46-

EUCLIE ANE MODULA

(* Insert a character into the circular buffer *)
procedure Put (Ch: char);

begin
if N=Nmax then wait(Nonfull) end;
inc (N) ;
Euf[In] := Ch;
In := (In mod Nmax)+1;
send (Nonempty)

end Put;

(* Remove a character from the circular buffer *)
procedure Get (var Ch: char);

begin
if N=0 then wait (Nonempty) end;
dec(N) ;
Ch := Buf[Out];
Out := (Out mod Nmax)+1;
send (Nonfull)

end Get;
begin

N := 0;
In := 1;
Out := 1

end Buffer handling;

(* Bead input characters and store in buffer *)
process Producer;

use Read, Put;
var Ch: char;
begin

loop
Read (Ch) ;
Put(Ch) ;

end
end Producer;

(* Remote characters from buffer and print *)
process Consumer;

use Get, Print;
var Ch: char;
begin

loop
Get(Ch) ;
Print(Ch);

end
end Consumer;

begin
Producer;
Consumer

end Listinput;

-47-

EDCLID AND MODULA

4.5 PEP-11 Device Modules

An implementation of Modula on a specific machine is intended
to provide access to I/O devices. The documented implementation
of Modula is for the PDP-11 [Wirth77c]. This section describes
the device modules that control input and output on the PDP-11.

Device drivers are written as processes within interface
modules prefixed by the keyword device. A driver is initiated
within the interface module body. An I/O operation is
accomplished by an assignment to a device control register,
followed by the statement doio. Device control registers are at
fixed locations in memory, and these addresses are specified in
the declaration of a register identifier.

doio initiates the actual I/O operation and causes the driver
to go to sleep waiting for an interrupt. An interrupt on the
PDP-11 is associated with an address in memory called the
interrupt vector. This address must be specified when the

the interrupt occurs, an implicit
the running process is suspended

until it executes another doio or a
is suspended and the previously
control. A device process cannot

"send" a signal to another device process. If a device process
does "send" a signal, the receiver is marked ready and inserted
into the ring, and the device process continues. The device
process should not invalidate the signalled condition, but this
is not checked.

process is declared. When
processor switch takes place:
and the driver takes over
"wait", at which time it
interrupted process regains

There are only single instances of device processes. Device
processes can be in the states running, waiting for signal, or
waiting for interrupt. They do not get into the ring of ready
user processes.

4.6 Multiprogramming in Euclid

There are no mechanisms provided for multiprogramming in
Euclid; whatever features are desired must be written in the
language itself. We will consider the problem cf providing
mechanisms in Euclid similar to those available in Modula.

Since processes cannot be explicitly designated, a procedure
"Spawn" must be written that will instantiate a procedure as a
process. When given the machine address of a procedure, "Spawn"
must provide it with stack space and link a descriptor for it
into the ring. Since neither memory reguirements nor a
descriptor are provided by the compiler, they would have to be
explicitly passed as parameters. "Spawn" must have access to
machine registers to set up the storage linkage.

A Euclid module could play the role of a Modula interface
module if we assume a single processor and switching only at the
reguest of the running process (except for interrupts), as Modula
does. To allow external routines to access the local data, all

-48-

EUCLID AND MODULA

identifiers defined in the module would be explicitly exported.
Signals could be implemented as pointers, as in Modula, and
"Send" and "Wait" procedures could be provided. Again, these
would have to be in a machine dependent module as they must have
access to processor status registers to provide processor
switching.

Providing multiprogramming facilities requires manipulation
of run-time environments (providing stack space, linking
procedure descriptors, storing process state vectors, etc.). In
Euclid the required information is known only to the compiler.
In order to program the facilities we have discussed, it is
necessary to use machine code in machine-dependent modules to
access all the hardware registers, and to have a complete
knowledge of how a particular Euclid compiler implements the run¬
time environment. This means that the language (by itself) is
net sufficient for writing operating system kernels.

4.7 Evaluation of Multiprogramming Facilities

The simple multiprogramming facilities of Modula are easy to
understand and to implement; the Modula runtime support package
is less than 200 bytes of code. However, its simplicity can lead
tc problems. Consider the situation where two processes are
active, one of which is doing a lot of data transfers, the other
a lot of computing. To maximize use of machine resources we
would prefer interrupts from completed data transfers to be
quickly serviced by the I/O process so that it could initiate
another transfer and thus keep the device busy. In Modula, the
I/O process would be suspended when the first transfer started,
the compute process would take over and be interrupted when the
transfer was complete, and then the compute process would be
allowed to continue after the driver had handled the interrupt.
Because there is no processor pre-emption, the I/O process could
wait for a long time before being rescheduled to start the next
I/O operation. This defect is not critical in an experimental
system like Modula because processes could periodically issue
explicit "waif's to allow such processor switching. However,
this relies on the honorable intentions of all processes.

Euclid does not have any multiprogramming facilities,
although those of Modula could be provided as discussed above.
Additional parameters would be required for processes, and the

would have
the entire

in this area
and simple

to have
runtime
is the
set of

programmer of the machine dependent module
knowledge of the compiler's model of
environment. The major advantage of Modula
provision of an extremely efficient
multiprogramming facilities as part of the language itself. The
major advantage of Euclid is the flexibility of allowing
different multiprogramming facilities to be provided, whereas
Modula is locked into a particular multiprogramming methodology.
The advantage here only arises because of access to machine code
from Euclid - no useful facilities or primitives are provided in
the language.

-49-

EUCLID AND MODULA

5 Summary

Although both Euclid and Modula are based on Pascal and
intended for writing system software, the further goals of the
languages resulted in two rather different languages. In
general, Modula is a much smaller and simpler language than
Euclid. Modula has perhaps more specific goals: it is intended
for multiprogramming, especially on minicomputers. Euclid is a
much more complex language, due in part to its more encompassing
goals and in particular to its goal of verifiability. More
mechanism is included in the language so that more errors can be
caught by the compiler and so that more of the information needed
for verification is explicit in the program text. Quite often,
where Modula deleted or restricted a feature in its Pascal base,
Euclid extended it. Thus the task of designing and implementing
a reliable compiler for Modula seems quite simple compared to the
effort required for a reliable Euclid compiler.

It seems almost simplistic to state that we would choose to
use each language in applications for which the respective
language was intended. This statement, however, has some subtle
conseguences. Where multiprogramming on minis or verification is
net the overwhelming concern, the question then becomes which
language would provide greater confidence that a program written
in it would indeed do the job at hand.

One requires more than faith that an implementation is
correct according to its specification. Modula provides a great
amount of faith precisely because of the size and simplicity of
the language and its compiler. Assuming there existed a reliable
Euclid compiler, Euclid, neither small nor simple, provides
specific features such as type safety and aliasing restrictions
that serve as a firm basis for rigorously verifying the
correctness of a program. Moreover, even for programs not
intended to be formally verified, the philosophy embodied in
Euclid increases the programmer's confidence that the program is
intuitively correct, and thus meets its specification.

References

[Dahl et al.68]
O.-J. Dahl, E. Myhrhaug, and K. Nygaard; The Simula 67 Common
Base Language; Norwegian Computing Centre, Oslo (1968).

[Hoare74]
C.A.R. Hoare; Monitors: an Operating System Structuring
Concept; CACM 17,1C (October 1974) pp. 549-557.

[Wirt h77a]
N. Wirth; Modula: a Language for Modular Multiprogramming;
Software, Practice and Experience 7,1 (1977) pp. 3-35.

[Wirt h77b]
N. Wirth; The Use of Modula; Software, Practice and
Experience 7,1 (1977) pp. 37-65.

-50-

EUCLID AND MODULA

[Wirth77c]
N. Wirth; Design and Implementation of Modula;
Practice and Experience 7,1 (1977) pp. 67-84.

Software,

-51-

INDEX TO THE EUCLID REPORT

Abs (standard function) 6.1.2
abstraction function 6.2.3
accessible identifier 7.3
actual parameter 2.
adding operators 8.1.2
Address (standard component of StorageUnits) 6.1.2
AddressType 6.1.2
alignment (standard component of all types) 6.
alignment clause 6.2.4
Allocate (standard component of zones) 6.2.6
annotation 13.3
any 6.3
array types 6.2.1
assert statements 9.1.4
assertions 2., 3.2, 6.2.3, 9.1.4
assignment statements 9.1.1
at clause 6.2.4
automatic insertion of semicolons 3.3

BaseType (standard component of set types) 6.2.5
bind declaration 7.
binding 7.4, 9.2.4
binding condition 6.2.3
bits clause 6.2.4
blocks 9.2.1
Boolean operators 8.1.4
Boolean types 6.1.2
break character 3., 13.1

capitalization convention for built-in components 16.1
capitalization of identifiers 14.1
case label list 6.2.2
case statements 9.2.2.2
char 6.1.2
character code 4.
character strings 6.2.2
checked option 3.2, 6.2.3, 9.2.1
Chr (standard function) 6.1.2
closed scope 7.3
collections 6.2.6
comments 3.
compilation unit 12.
component variable 7.2
ComponentType (standard component of array types) 6.2.1
compound statements 9.2.1
conditional statements 9.2.2
constant components of records and modules 14.6
constant declarations 7.

-52-

INDEX TO THE EUCLID REPORT

constant parameters
containing variable

9.1.2
7. 2.2

data type declarations 6.
Deallocate (standard component of zones) 6.2.6
declarations, constants 7.
declarations, data types 6.
declarations, functions 11.
declarations, procedures 10.
declarations, variables 7.
decreasing 9.2.3.2
discriminating case statements 9.2.2.2
dynamic variables 6.2.6

empty statement 9.1
entire variables 7.1
enumerated types 6.1.1
escape statements 9.1.3
exit statements 9.1.3
explicit type conversion
exporting 6.2.3
expressions 8.
extended character 4.

6.5

field designators 7.2.2
field identifiers 6.2.2
fields 6.2.2
final action 6.2.3, 14.7
first (standard component cf enumerated types) 6.1.1
first (standard component of subrange types) 6.1.3
fixed-address component 7.
for statements 9.2.3.2
formal parameter 2.
forward 6.
Free (standard component of collection variables) 6.2.6
free identifier 7.3
function declarations 11.
function designators 8.2

generators 9.2.3.2

identifiers 4., 14.1
if statements 9.2.2.1
inplementation 14.
importing 7.3
Index (standard component of collection variables) 6.2.6.
indexed variables 7.2.1
IndexType (standard component of array types) 6.2.1
initial action 6.2.3
initialization of variables 7.
inline 10.
inline code 14.8
integer 6.1.2
invariant relations 2., 6.2.3
itsType (standard component of all types) 6.

-53-

INDEX TO THE EUCLID REPORT

last (standard component of enumerated types) 6.1.1
last (standard component of subrange types) 6.1.3
legal Euclid program 3.
legality assertions 3.2
lexical structure 3.3
literal constants 5.
literal string constants 4.
lcop statements 9.2.3.1

machine-code routines 10.
machine-dependent modules 6.2.3
machine-dependent records 6.2.4
main variable 7.
manifest constants 5., 2.
module type generators 9.2.3.2
module types 6.2.3
multiplying operators 8.1.1

New (standard component of collection variables) 6.2.6
nil (standard component of collection variables) 6.2.6
numbers 4.

ObjectType (standard component of collection variables) 6.2.6
Odd (standard function) 6.1.2
cne-pass translation 14.3
open scope 7.3
operator precedence 8.
operators 8.1
Ord (standard component of enumerated types) 6.1.1
Ord (standard component of subrange types) 6.1.3
otherwise 6.2.2, 9.2.2.2
overlapping variables 7., 7.4

packed 6.2
parameterized types 6.3, 14.11
parameters 2., 6.3, 9.1.2, 10., 14.4
parsing 14.2
pervasive 7.3
pointer types 6.2.6
pointers 6.2.6, 7.2.3
postassertion 2., 10.
preassertion 2., 10.
precedence 8.
Pred (standard component of enumerated types) 6.1.1
Pred (standard component of subrange types) 6.1.3
procedure declarations 10.
procedure heading 10.
procedure statements 9.1.2
programs 12.

readonly binding condition 7.
record types 6.2.2
reference counts 14.9
reference-counted collection 6.2.6
referenced variables 7.2.3
relational operators 8.1.3

-54-

INDEX TO THE EUCLID REPORT

renamed variable 7.4
repetitive statements 9.2.3
representation of basic symbols 13.1
representation of pointers 14. 10
representation, standard 6., 10.
return statements 9.1.3
routine parameters 14.4
routines 3., 10., 11., 14.5
routines in modules 14.5

scope rules 7.3
sensitive contexts 6.
separators 13.
set types 6.2.5
sets 6.2.5, 8.
signedlnt 6.1.2
similar identifiers 3.
simple statements 9.1
simple types 6.1
size (standard component of all types) 6.
sizelnBits (standard component of StorageUnit) 6.1.2
standard for implementation and program interchange 13
standard format for programs 13.2
standard representations 6.
standard simple types 6.1.2
statements 9.
static variables 6.2.6
storageBlocks (standard component of zones) 6.2.6
StorageUnit 6.1.2
string 6.2.2
stringMaxlength 6.2.2
structured constants 7.
structured statements 9.2
structured types 6.2
subrange types 6.1.3
Succ (standard component of
Succ (standard component of

enumerated types) 6.1.1
subrange types) 6.1.3

tags 6.2.2
theStorage (standard component of zones)
type compatibility 6.4
type constructors 6.3
type conversion 6.5

6. 2.6

unknown 6.3
unsignedlnt 6.1.2

variable declarations 7.
variable parameters 9.1.2
variants 6.2.2
verifiable program 1.

well-behaved operation 6.1.2

zone (standard component of collection variables) 6.2.6

-55-

UNIVERSITY OF TORONTO

COMPUTER SYSTEMS RESEARCH GROUP

BIBLIOGRAPHY OF CSRG TECHNICAL REPORTS* *

* CSRG- -1 EMPIRICAL COMPARISON OF LR (k) AND PRECEDENCE PARSERS
J.J. Horning and W.R, Lalonde, September 1970
[ACM SIGPLAN Notices, November 1970]

CSRG- -2 AN EFFICIENT LALR PARSER GENERATOR
W.R. Lalonde, February 1971 [M.A.Sc. Thesis, EE 1971]

* CSRG- -3 A PROCESSOR GENERATOR SYSTEM
J.D. Gorrie, February 1971 [M.A.Sc. Thesis, EE 1971]

* CSRG- -4 DYLAN USER'S MANUAL
P.E. Bonzon, March 1971

CSRG- -5 DIAL - A PROGRAMMING SYSTEM FOR INTERACTIVE ALGEBRAIC
MANIPULATION
Alan C.M. Brown and J.J. Horning, March 1971

CSRG- -6 ON DEADLOCK IN COMPUTER SYSTEMS
Richard C. Holt, April 1971
[Ph.D. Thesis, Dept, of Computer Science,
Cornell University, 1971]

CSRG- -7 THE STAR-RING SYSTEM OF LOOSELY COUPLED DIGITAL DEVICES
John Neill Thomas Potvin, August 1971
[M.A.Sc. Thesis, EE 1971]

* CSRG- -8 FILE ORGANIZATION AND STRUCTURE
G.M. Stacey, August 1971

CSR G- -9 DESIGN STUDY FOR A TWO-DIMENSIONAL COMPUTER-ASSISTED
ANIMATION SYSTEM
Kenneth B. Evans, January 1972 [M.Sc. Thesis, DCS, 1972]

* CSRG- -10 HOW A PROGRAMMING LANGUAGE IS USED
William Gregg Alexander, February 1972
[M.Sc. Thesis, DCS 1971; Computer, v.8, n.11, November 1975]

CSRG-11 PROJECT SUE STATUS REPORT
J.W. Atwood (ed.), April 1972

* CSRG- -12 THREE DIMENSIONAL DATA DISPLAY WITH HIDDEN LINE REMOVAL
Rupert Bramall, April 1972 [M.Sc. Thesis, DCS, 1971]

* CSRG- -13 A SYNTAX DIRECTED ERROR RECOVERY METHOD
Lewis R. James, May 1972 [M.Sc. Thesis, DCS, 1972]

+ Abbreviations:
DCS - Department of Computer Science, University of Toronto

EE - Department of Electrical Engineering, University of
Toronto

* - Out of print

CSRG-14 THE USE OF SERVICE TIME DISTRIBUTIONS IN SCHEDULING
Kenneth C. Sevcik, May 1972
[Ph.D, Thesis, Committee on Information Sciences,
University of Chicago, 1971; JACM, January 1974]

CSRG-15 PROCESS STRUCTURING
J. J. Horning and B. Randell, June 1972
[ACM Computing Surveys, March 1973]

CSRG-16 OPTIMAL PROCESSOR SCHEDULING WHEN SERVICE TIMES ARE
HYPEREXPONENTIALLY DISTRIBUTED AND PREEMTION OVERHEAD
IS NOT NEGLIGIBLE
Kenneth C. Sevcik, June 1972
[Proceedings of the Symposium on Computer-Communication,
Networks and Teletraffic, Polytechnic Institute of
Brooklyn, 1972]

* CSRG-17 PROGRAMMING LANGUAGE TRANSLATION TECHNIQUES
W.M. McKeeman, July 1972

CSRG-18 A COMPARATIVE ANALYSIS OF SEVERAL DISK SCHEDULING
ALGORITHMS
C.J.M. Turnbull, September 1972

CSRG-19 PROJECT SUE AS A LEARNING EXPERIENCE
K. C. Sevcik et al, September 1972
[Proceedings~AFIPS Fall Joint Computer Conference,
v. 41, December 1972]

* CSRG-20 A STUDY OF LANGUAGE DIRECTED COMPUTER DESIGN
David B. Wortman, December 1972
[Ph.D, Thesis, Computer Science Department,
Stanford University, 1972]

CSRG-21 AN APL TERMINAL APPROACH TO COMPUTER MAPPING
R. Kvaternik, December 1972 [M.Sc. Thesis, DCS, 1972]

* CSRG-22 AN IMPLEMENTATION LANGUAGE FOR MINICOMPUTERS
G.G. Kalmar, January 1973 [M.Sc. Thesis, DCS, 1972]

CSRG-23 COMPILER STRUCTURE
W.M. McKeeman, January 1973
[Proceedings of the USA-Japan Computer Conference, 1972]

* CSRG-24 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM
ENGINEERING
J.D. Gannon (ed.), March 1973

CSRG-25 THE INVESTIGATION OF SERVICE TIME DISTRIBUTIONS
Eleanor A. Lester, April 1973 [M.Sc. Thesis, DCS, 1973]

* CSRG-26 PSYCHOLOGICAL COMPLEXITY OF COMPUTER PROGRAMS:
AN INITIAL EXPERIMENT
Larry Weissraan, August 1973

* CSRG-27 STRUCTURED SUBSETS OF THE PL/I LANGUAGE
Richard C. Holt and David B. Wortman, October 1973

* CSRG-28 ON THE REDUCED MATRIX REPRESENTATION OF LR(k)
PARSER TABLES
Marc Louis Joliat, October 1973 [Ph.D. Thesis, EE 1973]

* CSRG-29 A STUDENT PROJECT FOR AN OPERATING SYSTEMS COURSE
B. Czarnik and D. Tsichritzis (eds.), November 1973

* CSRG-30 A PSEUDO-MACHINE FOR CODE GENERATION
Henry John Pasko, December 1973 [M.Sc. Thesis, DCS 1973]

* CSRG-31 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM
ENGINEERING
J.D. Gannon (ed.), Second Edition, March 1974

CSRG-32 SCHEDULING MULTIPLE RESOURCE COMPUTER SYSTEMS
E. D. Lazowska, May 1974 [M.Sc. Thesis, DCS, 1974]

* CSRG-33 AN EDUCATIONAL DATA BASE MANAGEMENT SYSTEM
F. Lochovsky and D. Tsichritzis, May 1974 [INFOR,
to appear]

* CSRG-34 ALLOCATING STORAGE IN HIERARCHICAL DATA BASES
P. Bernstein and D. Tsichritzis, May 1974 [Information
Systems Journal, v.1, pp. 133-140]

* CSRG-35 ON IMPLEMENTATION OF RELATIONS
D. Tsichritzis, May 1974

* CSRG-36 SIX PL/I COMPILERS
D.B. Wortman, P.J. Khaiat, and D.M. Lasker, August 1974
[Software Practice and Experience, v.6, n.3,
July-Sept. 1976]

* CSRG-37 A METHODOLOGY FOR STUDYING THE PSYCHOLOGICAL COMPLEXITY
OF COMPUTER PROGRAMS
Laurence M. Weissman, August 1974
[Ph.D. Thesis, DCS, 1974]

* CSRG-38 AN INVESTIGATION OF A NEW METHOD OF CONSTRUCTING
SOFTWARE
David M. Lasker, September 1974 [M.Sc. Thesis, DCS, 1974]

CSRG-39 AN ALGEBRAIC MODEL FOR STRING PATTERNS
Glenn F. Stewart, September 1974 [M.Sc. Thesis, DCS, 1974]

* CSRG-40 EDUCATIONAL DATA BASE SYSTEM USER'S MANUAL
J. Klebanoff, F. Lochovsky, A. Ro2itis, and
D. Tsichritzis, September 1974

* CSRG-41 NOTES FROM A WORKSHOP ON THE ATTAINMENT OF
RELIABLE SOFTWARE
David B. Wortman (ed.), September 1974

* CSRG-42 THE PROJECT SUF SYSTEM LANGUAGE REFERENCE MANUAL
B.L. Clark and F.J.B. Ham, September 1974

CSRG-43 A DATA BASE PROCESSOR
E. A. Ozkarahan, S.A. Schuster and K.C. Smith,
November 1974 [Proceedings National Computer
Conference 1975, v.44, pp.379-388]

* CSRG-44 MATCHING PROGRAM AND DATA REPRESENTATION TO A
COMPUTING ENVIRONMENT
Eric C.R. Hehner, November 1974 [Ph.D. Thesis, DCS, 1974

* CSRG-45 THREE APPROACHES TO RELIABLE SOFTWARE; LANGUAGE
DESIGN, DYADIC SPECIFICATION, COMPLEMENTARY SEMANTICS
J.E. Donahue, J.D. Gannon, J.V. Guttag and
J.J. Horning, December 1974

CSRG-46 THE SYNTHESIS OF OPTIMAL DECISION TREES FROM
DECISION TABLES
Helmut Schumacher, December 1974
[M.Sc. Thesis, DCS, 1974]

CSRG-47 LANGUAGE DESIGN TO ENHANCE PROGRAMMING RELIABILITY
John D. Gannon, January 1975 [Ph.D. Thesis, DCS, 1975]

CSRG-48 DETERMINISTIC LEFT TO RIGHT PARSING
Christopher J.M. Turnbull, January 1975
[Ph.D. Thesis, EE, 1974]

* CSRG-49 A NETWORK FRAMEWORK FOR RELATIONAL IMPLEMENTATION
D. Tsichritzis, February 1975 [in Data Base
Description, Dongue and Nijssen (eds.). North
Holland Publishing Co.]

* CSRG-50 A UNIFIED APPROACH TO FUNCTIONAL DEPENDENCIES
AND RELATIONS
P.A. Bernstein, J.R. Swenson and D.C. Tsichritzis
February 1975 [Proceedings of the ACM SIGMOD Conference,
1975]

* CSRG-51 ZETA: A PROTOTYPE RELATIONAL DATA BASE
MANAGEMENT SYSTEM
M. Brodie (ed). February 1975 [Proceedings Pacific
ACM Conference, 1975]

CSRG-52 AUTOMATIC GENERATION OF SYNTAX-REPAIRING AND
PARAGRAPHING PARSERS
David T. Barnard, March 1975 [M.Sc. Thesis, DCS, 1975]

* CSRG-53 QUERY EXECUTION AND INDEX SELECTION FOR RELATIONAL
DATA BASES
J.H. Gilles Farley and Stewart A. Schuster, March 1975

CSRG-54 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER
PROGRAM ENGINEERING
J.V. Guttag (ed.). Third Edition, April 1975

CSRG-55 STRUCTURED SUBSETS OF THE PL/1 LANGUAGE
Richard C. Holt and David B. Wortman, May 1975

CSRG-56 FEATURES OF A CONCEPTUAL SCHEMA
D. Tsichritzis, June 1975 [Proceedings Very Large
Data Base Conference, 1975]

* CSRG-57 MERLIN: TOWARDS AN IDEAL PROGRAMMING LANGUAGE
Eric C.R. Hehner, July 1975

CSRG-58 ON THE SEMANTICS OF THE RELATIONAL DATA MODEL
Hans Albrecht Schmid and J. Richard Swenson,
July 1975 [Proceedings of the ACM SIGMOD Conference,
1 975]

* CSRG-59 THE SPECIFICATION AND APPIICATION TO PROGRAMMING
OF ABSTRACT DATA TYPES
John V. Guttag, September 1975 [Ph.D. Thesis, DCS, 1975

CSRG-60 NORMALIZATION AND FUNCTIONAL DEPENDENCIES IN THE
RELATIONAL DATA BASE MODEL
Phillip Alan Bernstein, October 1975
[Ph.D. Thesis, DCS, 1975]

* CSRG-61 LSL: A LINK AND SELECTION LANGUAGE
D. Tsichritzis, November 1975 [Proceedings ACM
SIGMOD Conference, 1976]

* CSRG-62 COMPLEMENTARY DEFINITIONS OF PROGRAMMING
LANGUAGE SEMANTICS
James E. Donahue, November 1975
[Ph.D. Thesis, DCS, 1975]

CSFG-63 AN EXPERIMENTAL EVALUATION OF CHESS PLAYING
HEURISTICS
Lazio Sugar, December 1975 [M.Sc. Thesis, DCS, 1975]

CSRG-64 A VIRTUAL MEMORY SYSTEM FOR A RELATIONAL
ASSOCIATIVE PROCESSOR
S.A. Schuster, E.A. Ozkarahan, and K.C. Smith,
February 1976 [Proceedings National Computer
Conference 1976, v.45, pp.855-862]

* CSFG-65 PERFORMANCE EVALUATION OF A RELATIONAL
ASSOCIATIVE PROCESSOR
E. A. Ozkarahan, S.A. Schuster, and K.C. Sevcik,
February 1976 [ACM Transactions on Database
Systems, v.1, n:4, December 1976]

CSRG-66 EDITING COMPUTER ANIMATED FILM
Michael D. Tilson, February 1976
[M.Sc. Thesis, DCS, 1975]

CSRG-67 A DIAGRAMMATIC APPROACH TO PROGRAMMING LANGUAGE
SEMANTICS
James R. Cordy, March 1976 [M.Sc. Thesis, DCS, 1976]

* CSRG-68 A SYNTHETIC ENGLISH QUERY LANGUAGE FOR A
RELATIONAL ASSOCIATIVE PROCESSOR
L.Kerschberg, E.A. Ozkarahan, and J.E.S. Pacheco

April 1976

CSRG-69 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM ENGINEERING
D. Barnard and D. Thompson (Eds.), Fourth Edition, May 1976

* CSRG-70 A TAXONOMY OF DATA MODELS
L. Kerschberg, A. Klug, and D. Tsichritzis, May 1976
[Proceedings Very Large Data Base Conference, 1976]

CSRG-71 OPTIMIZATION FEATURES FOR THE ARCHITECTURE OF A
DATA BASE MACHINE
E. A. Ozkarahan and K.C. Sevcik, May 1976

* CSRG-72 THE RELATIONAL DATA BASE SYSTEM OMEGA - PROGRESS REPORT
H.A. Schmid (ed.), P.A. Bernstein (ed.), B. Arlow,
R. Baker and S. Pozgaj, July 1976

CSRG-73 AN ALGORITHMIC APPROACH TO NORMALIZATION OF
RELATIONAL DATA BASE SCHEMAS
P.A. Bernstein and C. Beeri, September 1976

CSRG-74 A HIGH-LEVEL MACHINE-ORIENTED ASSEMBLER LANGUAGE
FOR A DATA BASE MACHINE
E.A. Ozkarahan and S.A. Schuster, October 1976

CSRG-75 DO CONSIDERED OD: A CONTRIBUTION TO THE
PROGRAMMING CALCULUS
Eric C.R. Hehner, November 1976

CSRG-76 "SOFTWARE HUT": A COMPUTER PROGRAM ENGINEERING
PROJECT IN THE FORM OF A GAME
J.J. Horning and D.B. Wortman, November 1976

CSRG-77 A SHORT STUDY OF PROGRAM AND MEMORY POLICY BEHAVIOUR
G. Scott Graham, January 1977

CSRG-78 A PANACHE OF DBMS IDEAS
D. Tsichritzis, February 1977

CSRG-79 THE DESIGN AND IMPLEMENTATION OF AN ADVANCED LALR
PARSE TABLE CONSTRUCTOR
David H. Thompson, April 1977 [M.Sc. Thesis, DCS, 1976]

CSRG-80 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM ENGINEERING
D. Barnard (Ed.), Fifth Edition, May 1977

CSRG-81 PROGRAMMING METHODOLOGY: AN ANNOTATED BIBLIOGRAPHY FOR
IFIP WORKING GROUP 2.3
Sol J. Greenspan and J.J. Horning (Eds.), First Edition,
May 1977

CSRG-82 NOTES ON EUCLID
edited by W. David Elliot and David T. Barnard,
August 1977

.

--

